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A B S T R A C T

Electricity is an essential input to both the production of household commodities, and the provision of pub-
lic infrastructure services. The latter, in turn, are essential to the generation of additional household goods.
Thus, customers’ willingness to pay to avoid power interruptions will reflect both aspects of foregone house-
hold production. We recognize this as an opportunity to value infrastructure services via stated preference
methods based on power outage scenarios. We motivate our model using household production theory, and
implement it empirically within a Random Utility framework to derive European households’ willingness-
to-pay to avoid disruption of electricity provision to the “front door,” as well as the loss of important public
services. We find that a considerable portion of total willingness-to-pay, to the order of 20–80%, relates to
the public service component. This stresses the importance of explicitly specifying the scale of outages and
their effect on public services in stated preference elicitation. Failure to do so will produce welfare estimates
that are unfit to inform policy, and normalized outage cost estimates that are biased - potentially by a very
large margin.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Severe weather events, which are expected to become more fre-
quent due to climate change, pose increasing risks to the reliable pro-
vision of electricity around the globe. On the supply side, increasing
temperatures and more frequent heat waves decrease the efficiency
of thermal and nuclear power plants by hampering thermal conver-
sion, and by reducing the availability and ability of water for cooling.
Hydropower plants, in turn, are vulnerable to extreme precipita-
tion and flood events, as well as inter-annual variation in inflows
(Arent et al., 2014). All types of supply installations in low-lying areas
are at an increased risk of flooding (Davis and Clemmer, 2014). On
the transmission and distribution side, more frequent violent storms
damage transmission lines and other elements of the electric grid
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year-round. Wildfires, which are increasing in frequency and feroc-
ity, directly destroy electric infrastructure, and interfere with the
conductivity of transmission lines (Davis and Clemmer, 2014). On the
demand side, rising temperatures and intense heat waves increase
the demand for cooling in many regions, further taxing the capacity
of the electricity system (Davis and Clemmer, 2014). All these risks
lead to more frequent and prolonged power interruptions. For the
example, in the U.S. the average annual number of weather-related
power outages has doubled between 2003 and 2012, affecting an
average of 15 million customers each year (Kenward and Raja, 2013).

Extreme weather and a changing climate also affects other
elements of the public infrastructure, such as water supply, sanita-
tion services, and transportation. Water supply is affected both in
terms of quantity due to reduced renewable surface and ground-
water resources in many regions, and in terms of quality due to
increased sedimentation and runoffs, as well as disruption of treat-
ment facilities during floods (IPCC, 2014). More frequent heavy
rainfall events can also overload the capacity of sewer systems
and wastewater treatment plants, causing disruptions in sanitation
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services (Arent et al., 2014). Transportation services, in turn, are vul-
nerable to flooding, will require higher maintenance due to larger
temperature swings, and face cooling challenges in many parts of
the world (Arent et al., 2014). Naturally, disruptions in any of these
primary services can, in turn, affect the provision of health and
emergency services (IPCC, 2014).

Importantly for our study, all of these public services rely to a
large extent on the provision of electricity. Therefore, climate change
is expected to exacerbate disruptions of basic infrastructure services
directly, via the factors mentioned above, and indirectly, by increas-
ing the risk of power outages. In consequence, the economic value
of electric service reliability is intrinsically linked to the societal
value of other segments of the public infrastructure. Our analysis
exploits this linkage to elicit values for both power provision and
power-dependent infrastructure services (ISs).

This study adds to the outage cost literature by dis-aggregating
total willingness-to-pay (WTP) to avoid a power interruption into
values lost due to electricity not delivered directly to the household
(i.e. the “front door”), and values lost due to interrupted ISs in the
households’ neighborhood or region. This informs decisions regard-
ing the optimal provision of these services, which are often largely
funded by taxpayers, as well as the prioritization of infrastructure
protection from power interruptions.

We find that a sizable portion of average hourly outage costs, to
the order of 20–80 %, can be attributed to lost ISs for our sample
of residents from eight European countries. Customers are espe-
cially sensitive to losing medical, communication, transportation,
and sanitation services. Our findings raise serious concerns about
using the common “WTP/kilowatt hour (kwh) unserved” metric to
express outage impacts to residents, since kwh unserved are tra-
ditionally computed at the “front door,” whereas, as shown in this
study, household WTP relates to a much broader set of impacts and
thus a much larger volume of lost electric load.

1.1. Power outages and infrastructure services

It is well documented that large-scale power outages can severely
affect critical elements of the public infrastructure. For example, as
summarized by Public Safety and Emergency Preparedness Canada
(2006), the Northeastern Interconnection power outage of 2003,
attributed to an overloaded grid, affected 50 million people in the
U.S. and Canada, and impacted “virtually all ten critical infrastructure
sectors,” such as banking services, food distribution, waste water
treatment, traffic lights, highway signs, gas pumps, and even internet
services and firewalls, which exposed customers to multiple cyber
threats.

A 2003 storm-related outage that affected most of Italy brought
trains to a standstill and disrupted communication and telephone
services (BBC News, 2003). An overload in Germany’s power net-
work triggered widespread outages in five European countries in late
fall of 2006, leaving people stuck in elevators and delaying numer-
ous trains (BBC News, 2006). A 2007 winter storm that hit the U.S.
Midwest caused large-scale outages that left people without electric
heat or lights, halted airport operations, and disrupted water sup-
ply to thousands of residents due to the failure of electric pumps
(NBC News, 2007). In 2012, a series of thunder storms caused power
outages affecting nearly four million customers in the mid-Atlantic
and South-Eastern region of the U.S., cutting out traffic lights, halting
train services, and even knocking out Amazon’s cloud (data storage)
services, with the cascading effect of interrupting popular internet
sites and services such as Netflix and Instagram (CNN News, 2012).

It is therefore well conceivable that respondents have these IS
interruptions in mind when asked to think about their WTP to avoid a
specific outage scenario. However, with the exception of Reichl et al.
(2013), none of the published outage cost studies based on survey

methods elaborate on the spatial scale of a stipulated interruption.1

Households are either told that, for additional payments, front-door
delivery of power will remain uninterrupted (Layton and Moeltner,
2005; Carlsson and Martinsson, 2007), or asked to choose from a
set of outage bundles that vary in timing, length and / or frequency,
and are each linked to a specific fee added to the electricity bill
(Beenstock et al., 1998; Carlsson and Martinsson, 2008; Baarsma and
Hop, 2009; Blass et al., 2010).

In the first case, elicited WTP can only be interpreted as values
for household commodities produced exclusively with front-door
electricity (refrigeration, meals, hair drying, etc.) and provides no
guidance as to the broader societal value of protecting or maintaining
ISs. The second approach raises even bigger issues, as it is not clear
which outage scale, and thus the extent of impact on ISs, respondents
have in mind when they select from a given outage choice menu.
This makes it impossible to clearly assign derived WTP estimates to
front-door losses versus ISs-related damages, and, in turn, makes it
difficult to use resulting estimates for policy purposes.

1.2. Valuing infrastructure services

The ISs considered in this study are best described as quasi-public
goods, as they are all associated with fees, and are - at least to some
extent - provided by commercial entities. However, most of them
are typically subsidized by the government (medical care, water and
sanitation services, public transit) or require publicly financed infras-
tructure (gas pipelines, road maintenance, traffic lights and signage,
land and access roads for cell phone towers, etc.). In addition, some
of them are overseen by public utility commissions that have consid-
erable control over service scope, quality, and pricing (e.g water and
sanitation).

Thus, to the extent that taxpayer moneys are involved in the pro-
vision and maintenance of these services, it is economically mean-
ingful to think of an optimal level of provision. This, in turn, requires
information on costs and benefits. In many cases, the latter will be
difficult to gauge based on observed behavior alone, given muddled
price signals due to subsidies, regulation, or lack of temporal or spa-
tial variability. As in many other such cases, this suggests elicitation
approaches based on Stated Preferences (SP) methods.

We are aware of only a handful of studies that have attempted to
value essential public services in developed countries. For example,
Hensher et al. (2005) and Willis et al. (2005) use a Choice Experi-
ment (CE) approach to estimate households’ WTP for uninterrupted
water and sanitation services in Australia and England, respectively.
Hackl and Pruckner (2006), using contingent valuation (CV) meth-
ods, elicit Austrian households’ values for publicly funded emergency
medical services, using a scenario of “possible future privatization.”
Schwarzlose et al. (2014) implement a CE in three Texan counties to
elicit stakeholders’ values of various public transportation attributes,
with focus on expanded services for the elderly and using private car
registration fees as payment vehicle. Savage and Waldman (2009),
also employing a CE, estimate customers’ WTP for various attributes
of home internet service, such as reliability, speed, and independence
of phone connections.

While all these studies find that people care about these services,
such direct SP approaches also carry with them a set of empirical
risks. As discussed in Hensher et al. (2005) and Willis et al. (2005),
given the critical nature of some of these services to cover basic
human needs, and a lack of historic problems with service provision,
respondents may question the realism of stipulated interruption

1 Using a repeated discrete choice format similar to that employed in this study,
Reichl et al. (2013) stipulate outages that differ in scale between “street-only” and
“province-level” to their sample of Austrian households. However, they do not report
scale-specific WTP estimates.
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scenarios. Furthermore, any suggestions of taking away services tra-
ditionally provided by local governments will undoubtedly trigger
protest responses, and may introduce sample selection problems
into the empirical analysis.

However, as discussed above and as is evident from our empir-
ical data, most households, even in developed countries, will have
experienced power outages in recent history. Furthermore, large
scale outages are highly publicized in the media, reaching a popula-
tion well beyond actually affected residents. Therefore, the notion of
losing ISs that are reliant on electric power should not appear for-
eign and inconceivable to survey respondents. This should mitigate
any realism problems that may arise with more direct cessation-
of-service scenarios. In our application, we have a second built-in
safeguard against a lack of buy-in for stipulated scenarios. Specifi-
cally, as described below in more detail, we let respondents decide
themselves if they believe specific ISs will be affected in their neigh-
borhood or region by a prolonged outage. We find pronounced WTP
premia for households that hold such beliefs.

2. Modeling framework

2.1. Conceptual model

Given our main objective to value services to the household
that depend on electricity, the best-suited theoretical approach is
through a household production framework. As discussed in detail in
upper-level textbooks (e.g. Bockstael and McConnell, 2007; Phaneuf
and Requate, 2017), the household production approach to the valu-
ation of some quasi-fixed public good, say q, rests on the notion that
both q and observed market goods x enter a household technology
function that combines these inputs to generate useful services, say
H. Importantly, aside from its contribution to the provision of these
services, q does not otherwise enter the consumer’s utility function.
Bockstael and McConnell (1983) show that utility-theoretic welfare
measures for non-marginal changes in q can be obtained in the spe-
cial case where x is an essential input in the production of H. That is,
if x is zero, no H can be produced, regardless of the level of q.

In this study, electricity is the essential input for household pro-
duction of electricity-dependent goods and services, while elements
of the public infrastructure (water and sanitation, public transporta-
tion, communication and internet, etc.) take the role of the (semi-)
public good q. In this section we show that, due to electricity’s
essential good characteristic, welfare measures related to the pro-
vision of electricity can be unambiguously interpreted as values for
electricity-dependent household production. Furthermore, using a
survey-based identification strategy, we show that a good portion of
these values can be attributed to lost ISs.

A given household depends on electricity provision in two ways
to produce household goods and services, such as warm meals,
ironed shirts, online shopping, and entertainment: (i) It uses electric-
ity directly delivered to the “front door,” and (ii) it uses quasi-public
ISs such as the internet, ATM machines, and cell phone communica-
tion that themselves depend on electricity.

Let H1 be a vector of k1 household-produced, infrastructure-
independent goods and services, each of which uses electricity e1k

(e.g. operating a stove), household labor l1k (e.g. cooking a meal), and
other market inputs x1k (e.g. groceries). The production technology
for the entire bundle can then be expressed as

H1 = f1 (e1, l1, x1) , (1)

where vectors e1, l1, and x1 comprise the inputs for the k1 services.
Analogously, let H2 be a vector of k2 household-produced,

infrastructure-dependent services, each of which uses elements of
the public infrastructure Gk (e.g. internet service), household labor

l2k (e.g. time spent on the computer), and other market inputs x2k

(e.g. PC, high-speed modem, etc.). The production technology for the
entire bundle can then be expressed as

H2 = f2 (G (e2, g) , l2, x2) , (2)

where the vector notation is as before. Importantly, as denoted in
Eq. (2), the infrastructure services depend themselves on electricity
e2, in addition to other inputs g that are exogenous to the household.
Moreover, electricity is an essential input for the production of H1,
and - via its pivotal role in the provision of G, also the production of
H2. We therefore have the essential input restrictions

H1| (e1 = 0) = f1 (0, l1, x1) = 0, and

H2| (e2 = 0) = f2 (G (0, g) , l2, x2) = f2 (0, l2, x2) = 0 (3)

Given our focus on power outages that last for a relatively short
time horizon, we will treat the household’s market inputs related
to the use of infrastructure services (x2), which will primarily be
durable goods such as communication or computing devices, as fixed
in the following derivation.

Following standard reasoning for household production models
(e.g. Bockstael and McConnell, 2007; Phaneuf and Requate, 2017) the
household’s optimization problem can be conceptually described as
a two-step process: First, the household chooses home-used elec-
tricity e1, market inputs x1, labor allocations l1 and l2, and public
services G to achieve a certain level of household services H1 and H2

at the lowest possible cost. This produces the cost function

C (pe, p1, pG, H1, H2) = min
e1,x1,l1,l2,G

⎧⎨
⎩pee1 + p′

1x1 + p′
GG(.)

+ k′
1 (H1 − f1(.)) + k′

2 (H2 − f2(.))

+k3

⎛
⎝L −

k1∑
k=1

l1k −
k2∑

k=1

l2k

⎞
⎠

⎫⎬
⎭ , (4)

where pe is the price of electricity, and p1 and pG are, respectively, the
price vectors for x1 and G, L is the total available amount of at-home
labor, and the k terms are multipliers.

This cost function then feeds into the second conceptual step, in
which the household maximizes utility over H1, H2, and a numeraire
commodity z, subject to constraints for budget, technology, and
labor, that is:2

max
e1,x1,l1,l2,G,z

U (H1, H2, z) s.t.

m = C (pe, p1, pG, H1, H2) + z

H1 = f1 (e1, l1, x1)

H2 = f2 (G (e2, g) , l2, x2)

L =
k1∑

k=1

l1k +
k2∑

k=1

l2k (5)

2 In the interest of parsimony but without loss in generality we abstract from any
labor-leisure decisions in our model.
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where m is the total available household budget. Assuming inte-
rior solutions for all choice variables, this yields the indirect utility
function

V (H∗
1, H∗

2, z∗) , with

H∗
1 = f1 (pe, p1, pG, m, L)

H∗
2 = f2 (pe, p1, pG, m, L) and

z∗ = z (pe, p1, pG, m, L) (6)

where we continue to implicitly condition on x2. In a standard house-
hold production framework the next step would be to invoke the
essential input condition and express compensating variation (CV)
for a change in G (potentially down to zero) as the area between
two shifted Hicksian demands for e2, and use observed demand for
e2 to approximate this amount. In our case, this is problematic since
electricity e2 needed to run G is beyond the control of an individual
household, so there are no choke prices or observed demands for this
input at the household level.

Instead, we now switch to a stated preference framework to esti-
mate welfare associated with lost ISs, asking respondents to choose
between payment to avoid a specific (widespread) outage, or toler-
ate the interruption at no loss of income. We exploit the essential
input condition in the sense that if the interruption takes place, all of
e1, e2, G, H1, and H2 are driven to zero. Therefore, the estimated WTP
to avoid the outage can be directly interpreted as the welfare losses
associated with foregone production and consumption of household
goods and services. Furthermore, since G is itself an essential input
in the production of H2, as is evident from the second line in Eq.
(3), welfare losses associated with ceased production of H2 can be
unambiguously interpreted as the CV for the availability of G. As
mentioned above, we use a survey-based identification strategy to
extract this latter component of WTP.

Approximating indirect utility in Eq. (6) with a standard linear
form and adding a random error term allows us to cast the household
problem in a Random Utility Modeling (RUM) framework. Specifi-
cally, let indirect utility for household i under uninterrupted elec-
tricity service during a specific time frame s (e.g.: summer weekday,
6 am–10 am) be given as

Ṽ∗
si = ds

{
H∗

1i
′b∗

1s + H∗
2i

′b∗
2s

}
+ tmi − ds

{
t

(
pee∗

1i + p′
1x∗

1i + p′
GG∗

i (.)
)}

+ 4̃si

(7)

where ds measures the number of time periods (hours), the b∗ terms
denote the marginal utility, per hour, of household goods and ser-
vices H∗

1i and H∗
2i, respectively, t is the marginal utility of income, 4̃si

is a time-sensitive, idiosyncratic error term, and we have used the
relationship z∗

i = mi − ds
(
pee∗

1i + p′
1x∗

1i + p′
GG∗

i

)
.

Now consider a blackout during the exact same time frame. This
implies that neither home-used electricity e1 nor any of the quasi-
public services G will be available, driving the home production of
H1 and H2 to zero. At the same time, the household will not incur
any expenses for electricity e1 and public infrastructure G. However,
a perishable share of private inputs, say ax1i, with 0 ≤ a ≤ 1, will be
lost in case of an outage.

The indirect utility function thus reduces to

Ṽ∗
s,i0 = tmi − dstap′

1x∗
i1 + 4̃s,i0 (8)

where we specify a different idiosyncratic error 4̃s,i0 to accommodate
additional or different unobservables that may enter indirect utility
in case of a power outage compared to the case of power provision.

The compensating variation (willingness-to-pay) CVsi to avoid
this outage scenario “s′ ′ is then implicitly defined as

Ṽ∗
si (mi − CVsi) = Ũ∗

s,i0, (9)

which, using Eqs. (7) and (8) yields

CVsi = ds
{
H∗

1i
′b1s + H∗

2i
′b2s

} − ds
{
pee∗

1i + (1 − a) p′
1x∗

i1 + p′
GG∗

i (.)
}

+ 4si

where brs =
b∗

rs

t
, r = 1, 2 and 4si =

4̃si − 4̃s,i0

t
(10)

As is clear from this derivation CVsi includes components related
to both infrastructure-independent and infrastructure-dependent
household services. It represents the lost value of both types of home
production, minus foregone expenditures from not using electric-
ity or public infrastructure services, and the value of non-perishable
inputs that can be used at a later point in time.

If the household is offered some arbitrary bid Psi to avoid an out-
age of type s, it will take the contract if its willingness to pay exceeds
the bid, that is if

V∗
si =CVsi − Psi = ds

{
H∗

1i
′b1s + H∗

2i
′b2s

}

− ds
{
pee∗

1i + (1 − a) p′
1x∗

i1 + p′
GG∗

i (.)
} − Psi + 4si > 0 (11)

where V∗
si is the economic surplus left to the household after paying

to avoid the outage. In essence, Eq. (11) represents the increasingly
popular “surplus” version of the random utility model, aka “estima-
tion in willingness-to-pay (WTP) space” (e.g. Train and Weeks, 2005;
Sonnier et al., 2007; Scarpa et al., 2008).3

Empirically, this conceptual framework can be made operational
by letting

V∗
si = ds

(
h′

ibhs + r′
sibrs

) − Psi + 4si, (12)

where hi is a vector of household characteristics, rsi is a vector of
binary indicators for infrastructure services, and the b terms are cor-
responding coefficients. Specifically, in our empirical application the
elements rsi take on a value of one if household i believes the corre-
sponding infrastructure service will be affected by outage scenario s,
and a value of zero otherwise.

The interaction h′
ibhs captures the net value of lost infrastructure-

independent production per hour of interruption, that is the term
H∗

1i
′b1s − pee∗

1i − (1 −a)p′
1x∗

i1 in Eq. (11). This leaves r′
sibrs to measure

the net value of lost household production per hour of outage that is
dependent on infrastructure services, i.e. the term H∗

2i
′b2s − p′

GG∗
i (.)

in Eq. (11).

2.2. Econometric model

Our survey elicits households’ WTP a specified bid Psi to avoid
outage scenario s, for a set of S different interruptions, each distin-
guished by duration, time of occurrence, and season, as described
in more detail in the next section. Allowing for unrestricted error

3 As described in these references, the surplus model can equivalently be derived by
dividing indirect utility by the marginal utility of income, which in a linear-in-income
model, amounts to the coefficient of the price term.
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correlations, the full system of S surplus equations can thus be
written as

V∗
1i = d1

(
h′

ibh1 + r′
1ibr1

) − P1i + 41i

V∗
2i = d2

(
h′

ibh2 + r′
2ibr2

) − P2i + 42i

...

V∗
Si = dS

(
h′

ibhS + r′
SibrS

) − PSi + 4Si, with

4i = [41i 42i . . . 4Si]′ ∼ n (0,S) (13)

Thus, our combined error vector follows a multivariate normal dis-
tribution with zero mean and a full variance-covariance matrix S.4

Furthermore, we allow all surplus variances to be scenario-specific.
Since our stipulated outages differ in duration this allows ex ante for
more uncertainty from unobservables (i.e. a larger error variance) for
longer interruptions. This is confirmed in our empirical application.

Individual i′s contribution to the likelihood function is the joint
probability of observing the S-fold vector of outage responses yi.
Expressing latent WTP (that is surplus V∗

si minus bid Psi) as y∗
si and

collecting all S bids offered to respondent i in Pi, and all IS-responses
in ri this term can be written as:

prob (yi|hi, ri, Pi; b,S) = prob

⎡
⎢⎢⎢⎢⎣

b1i,l < y∗
1i < b1i,u

b2i,l < y∗
2i < b2i,u
...

bSi,l < y∗
Si < bSi,u

⎤
⎥⎥⎥⎥⎦

= Vi (hi, ri, Pi; b,S; Ti) , (14)

where b =
[
b′

1 b′
2 . . . b′

S
]′, and bsi,l and bsi,u designate, respec-

tively, the lower and upper threshold for latent WTP, as implied by
the observed response ysi. Specifically, bsi,l = Psi and bsi,u = ∞ if
ysi = 1 (“yes”).5 If a negative response is observed, i.e. ysi = 0,
we have bsi,l = −∞ and bsi,u = Psi. As indicated by the last line of
Eq. (14) this joint probability can be concisely expressed as an S-fold
cumulative normal density Vi, truncated to the S-dimensional region
Ti.

For the sample at large the likelihood function is thus given by

prob (y|H, R, P; b,S) =
N∏

i=1

Vi(.), (15)

where vector y comprises all individuals’ outage responses and P col-
lects all individual bid vectors. Analogously, matrices H and R collect
all hi and ri, respectively.

Maximum likelihood estimation of this model would be cum-
bersome for this high-dimensional equation system with individual-
specific truncation restrictions. We therefore opt for a Bayesian
estimation framework. The resulting Gibbs Sampler (GS) is straight-
forward to implement and converges after a reasonable num-
ber of burn-ins. The GS draws consecutively and repeatedly

4 It should be noted that despite the binary nature of the observed dependent vari-
ables (yes/no responses) all terms in S are identified, since responses are given with
respect to a known numerical threshold (the stipulated bid).

5 Strictly speaking, as noted by a reviewer, the upper threshold for WTP is house-
hold income, not ∞. However, we only capture income in general intervals in our
survey, and thus do not have precise point measures. Also, given that bids are in the
€0.25–70 range, and annual income is in the € tens of thousands, this distinction will
have no statistical impact when characterizing the area under the cumulative WTP
distribution to the right of the bid (in other words, probability mass to the right of
annual income will be zero by definition).

from the conditional posterior distributions p
(
b| {y∗

i

}N
i=1 , H, R, P; S

)
,

p
(
S| {y∗

i

}N
i=1 , H, R, P; b

)
and p

({
y∗

i

}N
i=1 |y, H, R, P; b,S

)
, where vector

y∗
i combines latent WTP for all S outage equations for household

i. Posterior inference is based on the marginals of the joint poste-
rior distribution p (b,S|y, H, R, P). Further details for this GS and its
implementation are given in a separate online appendix.6

Collecting primary parameters b and S in vector h, the GS yields
draws of h from the joint posterior distribution p (h|y, H, R, P). Poste-
rior predictive distributions (PPDs) of the expected hourly WTP for
the typical household in each country, for each of the four outage sce-
narios, can be obtained in straightforward manner. For each draw of
bs from the GS we compute ˆwtpsc|bs = 1

nc

∑
i∈c

(
h′

ibhs + r′
sibrs

)
, that

is the sample average of observation-specific estimates of expected
hourly WTP for country c. Repeating this computation for all draws of
bs from the original sampler yields the desired PPD, which can then
be examined for its statistical properties.

As discussed below in more detail, setting all elements of brs
to one (zero) produces WTP predictions for an otherwise typical
household that believes that all (none) of the public services are
affected.

3. Empirical application

3.1. Data

Our data are based on survey of residential electricity customers
conducted between fall 2012 and spring 2013 in all 27 EU nations
at that time. The survey team contacted over 176,000 households
and recruited between 260 and 300 respondents in each member
state, taking efforts to assure representativeness for the respec-
tive underlying population along key demographic dimensions, such
as geographic location, gender and age of the head of household,
employment status, and income. Households had the choice to com-
plete the questionnaire by phone or online. Details of the sampling
process and survey implementation are given in Garcia Gutierrez et
al. (2013), appendices A–D. 7

Importantly, a few weeks prior to the actual telephone or online
survey, each participant was sent a confirmation letter that reminded
them “to be conscious of their surroundings and activities and think
about all the ways they use electricity in their daily life,” to get them
to start thinking of the potentially widespread effects of a power
outage.

Three parts of the questionnaire are relevant for this study. Part
one collected background information on respondents’ experience
with power outages. In addition, households were asked to indicate
on an ordinal scale to what extent they believed each of eight essen-
tial ISs would be affected by a prolonged outage. Part two elicited
their WTP to avoid each of a set of eight unplanned power interrup-
tions. Part three then collected standard information on household
demographics.

For this study we focus on four of the stipulated interruptions that
were described as occurring at the country-level, as opposed to being

6 The Matlab code to implement the model is available from the authors upon
request.

7 Given budget constraints, the survey team aimed for an initial target of 250 partic-
ipating households per country. This level was exceeded in all cases. Households were
initially contacted by telephone or e-mail and asked about their willingness to par-
ticipate in a subsequent telephone or online survey. This first contact also served as a
screening tool to eliminate households that did not fit within the demographic target
quotas. The recruiting/screening procedure was carried out until about 125–150 par-
ticipants per country agreed to participate in a phone interview and 100–125 agreed
to participate in the online survey. Those who did fit the target quotas and agreed
to participate were sent a confirmation letter that contained the survey booklet or a
web link to the booklet. A second phone call was then made to walk the respondent
through the survey. Online participants were sent a survey link instead.
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Table 1
Power provision statistics by country (2012).

Year joined
EU

Sample size
(HHs)

Annual
kwh/p.c.

Price/kwh
(euros)

Num. of out. last yr. Longest outage last 5 yrs. Satisfied
w. utility
(%)Country % zero Mean Std. <1 h >4 h

Austria 1995 230 2093 0.20 48.3% 1.4 1.9 18.3% 13.0% 100%
Belgium 1958 214 1789 0.23 55.1% 1.4 2.9 20.1% 10.7% 94%
Denmark 1973 213 1790 0.30 59.2% 1.1 1.9 16.4% 11.7% 98%
Ireland 1973 235 1772 0.22 61.7% 0.9 1.5 6.0% 17.0% 97%
Luxembourg 1958 206 1746 0.17 57.8% 0.9 1.6 26.7% 8.3% 99%
Netherlands 1958 230 1496 0.19 61.7% 0.8 1.4 15.2% 16.5% 97%
Sweden 1995 234 4100 0.20 60.3% 1.2 2.4 17.1% 21.8% 96%
UK 1973 245 1807 0.17 56.3% 1.2 2.0 9.8% 19.2% 98%

kwh = kilowatt hour / Std. = standard deviation / p.c. = per capita / num. = number / yr. = year.

highly localized (“street level”). This assures that respondents could
reasonably assume that ISs were affected by such widespread events.

Furthermore, we narrow our sample to a subset of eight coun-
tries that share a similar outage history and, on average, hold similar
beliefs regarding affected ISs. This choice is largely driven by data
limitations given our modest sample sizes at the country level.
Specifically, preliminary analyses indicated clearly that the marginal
effects of covariates differ significantly across outage scenarios, i.e.
coefficient vectors bhs and brs in Eq. (12) are truly scenario spe-
cific, as presumed in our conceptual notation in the previous section.
This preempts any pooling of parameters across outages. The result-
ing large parameter space (close to 90 estimable model coefficients,
plus six variance-covariance terms) does not leave enough degrees of
freedom to estimate country-specific coefficients with any reasonable
degree of precision. We therefore opt to pool our data across a sub-
set of countries that are homogeneous in key aspects of this study,
especially in beliefs regarding IS interruptions. However, our model
still allows for country-specific predictions of WTP, as shown below.8

The resulting set of countries, listed in alphabetical order and
comprising a total of 1807 households, is given in Table 1. As is
evident from the first column, most of these nations have been
EU members for at least 40 years, with Austria and Sweden (1995)
constituting more recent additions. Sample sizes, after dropping
observations with missing key information, are comparable across
countries (column two), and so are measures of historic outage fre-
quency (columns five through seven), and satisfaction levels with
the local utility (last column). The survey also elicited information
on the longest outage respondents had experienced in the preced-
ing five-year period. As can be seen from columns eight and nine,
the resulting implicit distribution of maximum outage length differs
somewhat across countries, with Belgium and Luxembourg exhibit-
ing the largest share of relatively short “longest outages” (< 1 h), and
Sweden and the UK showing the highest percentage of respondents
that experienced an outage exceeding 4 h in duration.

The eight nations also differ markedly in annual per capita elec-
tricity consumption (column three), with Sweden (4100 kwh) taking
the lead and the Netherlands showing up as the thriftiest member

8 To determine such homogeneity, we computed the percentage of households that
believed that a given IS would be affected for each country and IS. We then examined
the deviations of these shares across all eight ISs and all 27 countries. The final set
of eight nations exhibits a deviation in average shares over all ISs of no larger than
8%, and a deviation in IS-specific shares of 20% or less across all public services. In
conjunction with similar income levels in most of these countries and a comparable
degree of (high) historic power reliability, we take this as an indication that citizens
of these nations are also likely to share similar preferences for infrastructure services.
We thus pool these data and estimate a single set of coefficients per outage scenario
for all eight nations. This strikes us as a reasonable compromise between allowing
marginal effects - and thus average hourly WTP - to remain scenario-specific, while
preserving a full set of explanatory variables and a large enough sample size to assure
identification.

(1496 kwh). The Danish pay by far the highest price for electricity
(€0.30/kwh, column four), while the remaining countries face similar
prices, in the €0.17–0.23 range.9

Table 2 shows aggregate respondent and household characteris-
tics for our sample. Overall, our data display a good representation
of female respondents (41–53 %), a comparable age structure across
countries, and expected average household sizes in the range of 2–
3 persons. The degree of urbanization (column 4) differs markedly
across nations, from less than 50% in Austria to close to 80% in Den-
mark. The majority of respondents in each country hold an A-level
diploma (a requirement for university entry), with Ireland and the
Netherlands falling slightly below the 50% mark. Households in Lux-
embourg have the highest average income (close to €50,000/year),
while the other nations show similar averages in the mid-€20,000s
to low €30,000s range.10

The survey template with the IS perception questions is given
in the online appendix. It shows a table for which each row cor-
responds to one of eight essential services: medical care (including
emergency response, henceforth abbreviated as “medical”), fuel and
gas supply (for private and public transportation, as well as heat-
ing, “fuel/gas”), electronic payment options (ATM use, credit card
transactions, electronic banking, “payments”), communication (land
and mobile telephone network, “phone”), heating systems (reliant
on electric pumps, “heating”), internet and network connections
(“internet”), electrically operated traffic (public transport, metro,
“transport”), and sanitation and sewage services (including water
supply, “sanitation”). For each IS respondents were asked to mark the
degree to which they thought it would be affected during an outage
that started 4 h ago, from “not at all affected,” “moderately affected,”
“strongly affected,” to “very strongly affected.”

To keep our analysis tractable, we convert the four-tiered opinion
scale into a binary indicator of “affected” (combining responses of
“strongly affected” and “very strongly affected”), and “not affected”
(combining responses of “not at all affected” and “moderately
affected”). For consistency with the all-or-nothing extrapolation for
a change in public services in our conceptual framework, and in
absence of any further information on respondents’ interpretation
of “affected,” we treat a stated belief of “affected” as commensurate
with the complete loss of a given service. To the extent that respon-
dents thought that a residual degree of the IS would still be provided,

9 Statistics on electricity consumptions in 2012 were obtained from European
Commission (2016a). Electricity prices for 2012 are given by European Commission
(2016b).
10 Income was computed based on the midpoints of ten interval bins. We approxi-

mate the upper bound of the highest category as the lower bound of that category plus
the bandwidth of the preceding bin. Household demographics for all 27 EU nations are
given in Cohen et al. (2016).
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Table 2
Sample statistics by country.

Age Education Income (€000s)

Country Female Mean Std. % urban (A level) HH size Mean Std.

Austria 49% 47.3 14.4 46% 53% 2.67 26.75 12.13
Belgium 49% 47.3 14.3 67% 68% 2.40 25.73 10.19
Denmark 41% 49.9 15.7 76% 53% 2.08 31.99 13.00
Ireland 46% 48.6 14.5 69% 47% 2.88 29.26 14.58
Luxembourg 45% 48.1 13.5 59% 60% 2.78 48.24 18.03
Netherlands 52% 49.0 14.4 65% 40% 2.17 24.11 10.12
Sweden 44% 47.4 15.4 72% 74% 2.00 24.22 11.15
UK 53% 47.3 14.4 68% 56% 2.67 23.51 12.63

Std. = standard deviation.

Table 3
Infrastructure failure perceptions by country (%).

Medical Fuel/Gas Payments Phone Heating Internet Transport Sanitation

Austria 55 57 79 69 74 82 89 50
Belgium 55 50 70 63 71 72 82 45
Denmark 60 53 81 62 73 79 88 57
Ireland 60 56 77 54 80 82 83 40
Luxembourg 55 59 69 66 79 76 75 50
Netherlands 63 55 77 73 74 67 85 50
Sweden 56 48 80 59 64 79 85 55
UK 72 57 77 62 77 78 85 46

Entries show the percentage of respondents that believed that a given infrastructure service would be strongly or very strongly affected after 4 h of power interruption.

our WTP estimates can be interpreted as a lower bound for welfare
losses associated with a complete cessation of service.

Table 3 summarizes these beliefs of IS failure for our set of eight
EU members. We see that the vast majority of households (70–90
%) believe that payments, heating, internet, and transport would be
affected. These percentages are slightly lower (50–70 %) for medical
fuel/gas, and phone, while only 40–50 % of respondents worry about
impacted sanitation services. Overall, therefore, our data exhibits
sufficient variability in beliefs to identify an IS effect, that is to dis-
entangle total WTP to avoid a given outage into WTP to preserve
household production related to front-door electric service, and WTP
to avoid a loss of services related to the public infrastructure.

Each country-level outage scenario presented to the respondents
is unplanned, and defined by duration (1, 4, 12, 24 h), and season
(summer, winter). Respondents were given the option to pay a spec-
ified bid (in form of an add-on to their next electricity bill) and avoid
the outage or to decline payment and experience the interruption.
Importantly, we stressed that the extra payment would leave the
household completely unaffected, including “all important services
discussed in the last section.” To provide some technical realism link-
ing payment to protection, respondents were told that “These days
there are technical solutions that can prevent critical events from lead-
ing to power outages, such as weather-resistant underground cables and
smarter switchgear equipment. These measures improve service relia-
bility significantly, especially during critical events, but their cost is also
significant.” This was followed by the actual elicitation question: “For
each scenario . . . I will read out a sum of money and ask you to tell me
whether you think you would prefer to pay this sum and therefore not be
affected by this power outage, or whether you would prefer not to pay
but instead experience this outage.”11

11 While we did not ask about backup technologies in our survey, we believe that it
is highly unlikely that a household in our sample of eight developed western nations,
many of them living in highly urbanized settings, have access to backup power gen-
eration, based on discussions with utilities and public advocacy groups during the
survey design and implementation stage. Furthermore, such technologies would not
help with the provision of semi-public infrastructure services, leaving that portion of
WTP unaffected at any rate.

Our preference elicitation format thus corresponds to a repeated
contingent valuation question, each framed in a single-bounded
discrete-choice format as employed in Layton and Moeltner (2005),
Carlsson and Martinsson (2007), and Reichl et al. (2013). The set-
tings for duration generally reflect the spectrum found in the existing
literature (e.g. Layton and Moeltner, 2005; Carlsson and Martins-
son, 2007; Carlsson and Martinsson, 2008; Baarsma and Hop, 2009;
Reichl et al., 2013). All of our stipulated outages occur on a week-
day and include a time span of likely high activity in the household,
i.e. either early morning or early evening. Table 4 depicts the outage
attributes for the four country-level scenarios. The online appendix
shows an example of an outage scenario, as it was presented to the
respondent.

We stipulated between three and four country-specific bid values
per outage scenario. The bid design was informed by a recent study
on energy reliability in Austria (Reichl et al., 2013). Specifically, we
adopt the four bids administered in that survey for outages of equal
length to those in our scenarios, with an adjustment for income dif-
ferences between Austria and the other seven countries in our set.
The survey team examined the share of “yes” responses for all bids
and countries for the first 25 observations to assure adequate cover-
age. This screening process did not prompt any ex-post adjustments
to the bid ladders.12

12 Originally, a total set of four bids were selected for each country across all eight
outage scenarios. Since we only consider the national-scale interruptions for this
analysis, the number of effective bids is reduced to three for some country/scenario
combinations, and - in the case of Luxembourg - to two for the first scenario. While
this is less than ideal from an efficiency perspective, the lowest and highest bids
are identical (up to income adjustments) for all countries and scenarios (see online
appendix Table 1). Thus, we at least bound implicit underlying WTP distributions in
equal fashion across nations. The bids in the Austrian study were derived based on
a D-optimality criterion with balanced utilities (Huber and Zwerina, 1996; Burgess
and Street, 2003; Burgess and Street, 2005; Ferrini and Scarpa, 2007). The full set of
bid amounts and share of “yes” responses for each scenario and country are given in
the online appendix. As is evident from the table, with few exceptions the percentage
of “yes” responses decreases monotonically over increasing bids, as expected. Other
than for differences in these bid amounts, the survey instrument including the out-
age scenarios and actual contingent valuation questions were identical across all eight
nations.
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3.2. Estimation results

We implement our correlated binary choice model with fixed
effects for each country to capture unobserved differences in relevant
aspects of power provision. Household vector hi in Eq. (13) includes
three age categories (35–45 years, 46–60 years, over 60 years, with
omitted baseline of 20–35 years), an indicator for an “urban” resi-
dential location (as opposed to suburban or rural), an indicator for
gender (with “female” the omitted baseline), household size, and
educational attainment (an indicator equal to one if the respondent
holds an A-level diploma). Household characteristics also include
the historic 12-month outage frequency, indicator categories for the
longest outage experienced in the preceding five years (1–4 h, 4–8 h,
8–24 h, and over 24 h, with < 1 h the implicit baseline category), and
a binary indicator variable for the household’s declared satisfaction
with the local power utility (1 = “very” or “fairly” satisfied, 0 = “not
very” or “not at all” satisfied).

This is followed by the eight IS indicators (vector rsi in Eq. (13)),
each taking value of one if a given respondent believed the service
in question would be affected, and a value of zero otherwise. As
discussed above, and as explicitly shown in Eqs. (12) and (13), the
marginal effects for all variables in hi and rsi are allowed to vary over
the four scenarios.

Our specification is completed by a binary indicator “scenario
ordering,” taking a value of one if the respondent received a sur-
vey version that showed the local outages first, followed by the
country-wide scenarios, and zero for the reversed case, to test for
(undesirable) formatting effects.

Ideally, we would collect separate IS beliefs for each outage sce-
nario, as indicated by the “s” subscript in rsi. In reality we only
observe respondents’ opinion on IS impacts for a generic “4 h +”
interruption, as shown in top left cell of the survey template in
Appendix A. Our empirical model thus rests on the assumption that
whichever beliefs a given respondent held for an outage lasting 4 h
also applies to our other three outage scenarios, with respective
durations of one, 12, and 24 h(see Table 4 above). Fortunately, for
most unobserved cases this assumption is rather mild - those who
answered “affected” for the 4 h interruption would most likely also
hold the same belief for outages of 12 and 24 h. Conversely, those
who believed that ISs would not be affected after 4 h can be safely
assumed to feel that way as well for a shorter outage of 1 h.

This leaves only three of six unobserved counterfactuals for which
our common-belief assumption is somewhat more tenuous: beliefs
for 12 and 24 h if they voted “unaffected” for 4 h, and beliefs for 1 h if
they voted “affected” for 4 h. Fortunately, in both situations a wrong
assumption would bias our IS coefficients, and thus our WTP esti-
mates for IS services, in the same direction, that is downwards. Thus,
any potential bias due to carrying 4-h beliefs through all other sce-
narios goes in the same direction as making wrong assumptions on
respondents’ interpretation of “affected,” as discussed above. This
simply reinforces that our WTP estimates are best interpreted as
lower bounds of the true welfare effect of a scenario-specific full
cessation of a given IS.13

A third reason for this lower-bound interpretation is presented by
the fact that we do not observe any savings that non-use of ISs would
bring - that is the term p′

GG∗
i in Eq. (11). However, in most cases these

savings will be relatively small (foregone public transportation fees,
not using heat for a few hours, etc.), such that we would not expect
full WTP and WTP net of savings to deviate much from one another.

13 It should be noted that we cannot run our system of equations with different
counterfactual imputations of beliefs for the less clear-cut cases, perhaps followed by
Bayesian model averaging. This is because each equation has its own separate set of
coefficients, so that any imputation other than the one we employ would automati-
cally result in a column of all ones or all zeros for the entire sample, and thus preempt
any identification of IS effects.

Table 4
Attribute settings for outage scenarios.

Scenario Duration (hours) Season Time span

1 1 Winter 8 pm–9 pm
2 4 Summer 6 am–10 am
3 12 Summer 8 am–8 pm
4 24 Winter 10 am–10 am

Full estimation results for model coefficients are given in Table 5,
while estimates for error variances, covariances, and resulting cor-
relations (i.e. the elements of S in Eq. (13)) are depicted in Table 6.
For each coefficient the table captures the posterior mean, the
posterior standard deviation, and the proportion of the posterior
distribution that exceeds zero. The latter metric provides an at-a-
glance assessment if a given variable has a predominantly positive
effect (“prop > 0” is close to one), a predominately negative effect
(“prop > 0” is close to zero) or an ambivalent effect (“prop>0”
approaches 0.5). In the following we will focus our discussion on
regressors for which at least 90% of the posterior distribution lies to
the left or to the right of zero, and refer to them as “significant”, in
slight abuse of Classical terminology.

As is clear from Table 6, error variances increase markedly with
outage duration (i.e. var (42) > var (44) > var (43) > var (41)), as
expected. In addition, all six correlation terms are strongly positive,
ranging from 0.318 for the first two equations to 0.642 for equations
two and four. Together, these findings support our choice of a fully
correlated system with equation-specific variances.

As discussed previously, the coefficient estimates captured in
Table 5 are to be interpreted as the marginal effects of each regressor
on the average hourly WTP for a given scenario. We can see from the
table that household size is the only demographic variable that has
a consistent positive effect on WTP across all scenarios, with WTP
increasing by €0.3–0.5 per additional household member. This is as
expected, as larger households comprise more individuals that could
feasibly be inconvenienced by an outage. Higher age also increases
WTP in most cases. For example, a person in the 60+ age category
is willing to pay €1.7 more to avoid a 1-h winter outage compared
to the baseline category (under 35), and approximately €0.5 more to
prevent either one of the two summer interruptions. This is, again,
not surprising as elderly individuals face larger health risks in case of
lost heating or cooling, and might otherwise feel more helpless and
vulnerable when power is lost. Having an A-level education also adds
€0.3–0.4 to hourly WTP compared to less-educated households. This
is likely due to the higher need by this segment to use the internet
and other electronic services that would be lost during an outage.
Similarly, urban residents pay a premium of €1.4 to avoid the 1-h
winter outage, and an increment of €0.3 to prevent the 12-h summer
outage compared to rural customers. Presumably, this points at the
higher degree of dependence of urban households on infrastructure
services, such as local transportation, as many of them may not own
a personal vehicle.

Of our outage history variables, the strongest signal comes from
the “longest outage >24 h ” indicator, which significantly boosts WTP
for scenario one by close to €3.5 over the baseline group (with the
longest outage experienced in the recent past not exceeding 1 h). This
mirrors the finding in Layton and Moeltner (2005), who also report
a positive relationship between WTP to avoid a future outage, and
the combined duration of all recently experienced interruptions. We
concur with these authors that while households may have learned
to cope with shorter outages, it appears that extremely long inter-
ruptions evoke decidedly unpleasant memories and thus lead to
higher WTP.

Scenario ordering (last row of the table) has a moderate, but sig-
nificant effect for the summer scenarios three and four. This could
suggest undesirable anchoring effects for these two interruptions,
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Table 5
Full estimation results for coefficients.

Winter, 1 h Winter, 24 h Summer, 4 h Summer, 12 h

Variable Mean Std. prop.> 0 Mean Std. prop.> 0 Mean Std. prop.> 0 Mean Std. prop.> 0

Austria −1.993 1.648 0.106 −0.175 0.740 0.409 −1.670 0.649 0.003 −2.313 0.858 0.003
Belgium −3.05 1.64 0.03 −0.236 0.714 0.369 −1.543 0.640 0.005 −2.399 0.839 0.001
Denmark −0.468 1.64 0.39 0.731 0.730 0.842 −1.174 0.643 0.030 −1.488 0.843 0.033
Ireland −0.757 1.66 0.32 −0.383 0.743 0.304 −1.544 0.653 0.007 −2.723 0.865 0.000
Luxembourg −1.681 1.66 0.15 0.920 0.742 0.892 −1.271 0.656 0.023 −1.351 0.861 0.051
Netherlands −2.296 1.61 0.08 −0.536 0.720 0.229 −1.814 0.641 0.001 −2.761 0.850 0.000
Sweden −2.871 1.633 0.037 −0.253 0.723 0.367 −1.835 0.645 0.001 −2.405 0.853 0.001
UK −3.106 1.667 0.030 −0.552 0.742 0.229 −1.789 0.661 0.003 −3.264 0.892 0.000
Urban 1.371 0.461 0.999 0.229 0.190 0.887 0.056 0.160 0.642 0.293 0.205 0.925
Male 1.227 0.434 0.998 −0.020 0.175 0.462 0.020 0.148 0.547 −0.177 0.189 0.171
Age 35 to 45 0.422 0.652 0.745 0.167 0.273 0.731 0.314 0.234 0.908 0.043 0.292 0.567
Age 46 to 60 0.737 0.599 0.896 −0.231 0.254 0.179 −0.003 0.212 0.491 −0.032 0.269 0.454
Age 60 plus 1.675 0.665 0.995 0.131 0.270 0.685 0.486 0.235 0.980 0.451 0.285 0.945
Longest out. 1–4 h 0.190 0.480 0.650 −0.057 0.199 0.393 −0.085 0.171 0.310 −0.122 0.216 0.286
Longest out. 4–8 h 0.722 0.758 0.836 −0.462 0.313 0.067 0.123 0.269 0.674 0.036 0.340 0.538
Longest out. 8–24 h −0.193 1.207 0.441 −0.557 0.523 0.142 −0.467 0.454 0.150 −0.358 0.556 0.263
Longest out. > 24 h 3.458 1.504 0.993 −0.263 0.577 0.323 0.456 0.503 0.816 −0.091 0.662 0.445
Num out. 12 months −0.048 0.120 0.344 −0.014 0.049 0.393 −0.006 0.042 0.449 −0.024 0.053 0.324
HH size 0.448 0.189 0.993 0.143 0.076 0.971 0.218 0.066 1.000 0.229 0.085 0.998
A-level educ. 0.454 0.441 0.851 0.400 0.183 0.987 0.333 0.157 0.984 0.377 0.197 0.975
Satisfied 0.835 1.266 0.741 0.379 0.544 0.759 0.317 0.473 0.749 1.457 0.638 0.991
Medical affected 0.446 0.446 0.841 0.076 0.189 0.660 0.279 0.164 0.959 0.496 0.203 0.994
Fuel/gas affected 0.037 0.456 0.534 0.085 0.189 0.672 −0.240 0.161 0.067 0.005 0.203 0.514
Payments affected 0.328 0.543 0.733 −0.234 0.230 0.153 0.358 0.199 0.965 −0.115 0.242 0.312
Phone affected 0.978 0.477 0.983 0.373 0.197 0.974 0.391 0.170 0.991 0.266 0.208 0.901
Heating affected −1.005 0.521 0.025 0.397 0.211 0.973 −0.087 0.183 0.315 0.003 0.227 0.506
Internet affected 0.551 0.561 0.835 −0.082 0.235 0.361 −0.112 0.202 0.289 −0.154 0.254 0.271
Transport affected −1.396 0.624 0.010 0.450 0.257 0.962 0.143 0.221 0.748 0.582 0.287 0.981
Sanitation affected 0.890 0.469 0.976 0.870 0.199 1.000 0.340 0.165 0.981 0.395 0.210 0.973
Scenario ordering −0.244 0.416 0.278 −0.083 0.172 0.320 0.213 0.149 0.924 0.261 0.187 0.919

Mean = posterior mean, Std. = posterior standard deviation.
prob.(> 0) = share of posterior density to the right of zero.

Table 6
Estimation results for error covariance matrix.

Variances, covariances Correlations

Mean Std. prop.>0 Mean Std. prop.>0

41 45.25 10.25 1.00
41, 42 140.03 23.97 1.00 0.318 0.040 1.000
42 4373.13 671.15 1.00
41, 43 39.59 6.15 1.00 0.625 0.029 1.000
42, 43 325.78 40.45 1.00 0.470 0.034 1.000
43 90.00 14.52 1.00
41, 44 112.70 19.56 1.00 0.523 0.035 1.000
42, 44 1512.33 183.12 1.00 0.642 0.031 1.000
43, 44 209.05 25.29 1.00 0.619 0.031 1.000
44 1287.07 219.12 1.00

Mean = posterior mean, Std. = posterior standard deviation.
prob.(> 0) = share of posterior density to the right of zero.

warranting some caution in interpreting the results related to these
equations. Fortunately, scenario effects emerge as irrelevant for the
two winter equations.14

Our main focus, however, rests with the IS indicators, captured in
the second-to-last block of rows of the table. Most noteworthy, con-
cerns about failure in communication (“phone”) and water and sani-
tation (“sanitation”) services increase WTP in all four cases. These are
also the only significant IS effects for the shorter winter outage. Not
surprisingly, the three longer outages all produce additional IS effects

14 We re-estimated our model for the two sub-samples associated with a given sce-
nario ordering. While model coefficients change somewhat with the loss of 50% of our
sample, the IS effects, which are the central focus of our analysis, remain qualitatively
similar for both groups and compared to the full sample. That is, essentially the same
ISs emerge as important for a given outage scenario in all three specifications.

with the bulk of posterior mass above zero. Specifically, for the win-
ter, 24 h case heating and transportation are of primary concern,
while a possible disruption of medical services produces significant
results for both summer scenarios. In addition, “payments” emerge
as significant for the shorter summer outage, while “transport” plays
an important role for the summer, 12 h interruption. 15

Figs. 1 and 2 depict these IS results in graphic form. Fig. 1 shows
the posterior distribution of the marginal IS effects on average hourly
WTP for the two winter scenarios, while Fig. 2 provides the analog
for the summer interruptions. A dotted vertical zero-line is super-
imposed on each sub-figure. As can be seen from these graphs, the
marginal IS effects identified as significant in the above discussion all
have posterior distributions that lie almost exclusively to the right of
zero.

Thus, as the main result of our study, we conclude that there exist
indeed separate IS effects within households’ overall WTP to avoid
a power outage. Furthermore, these effects are non-trivial in mag-
nitude, with posterior expectations ranging from €0.3/h to close to
€1/h. Recall that these figures are best interpreted as lower bounds
given our data limitations. In order to put these estimates in per-
spective to overall WTP, we now proceed to our predictive welfare
analysis.

3.3. Predicted WTP

We derive posterior predictive distributions for each scenario
and country for the following three settings of IS indicators: (i) as

15 In contrast, transportation has a counter-intuitive significant negative effect on
WTP for the 1 h winter outage. This is likely due to the fact that some respondents
that believed transportation services would be affected for a longer interruption did
not hold this concern for this short outage. As mentioned above, this would bias the
corresponding coefficient downwards.
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Table 7
Predicted hourly WTP.

Winter, 1 h Winter, 24 h Summer, 4 h Summer, 12 h

Country Mean Std. prob.>0 Mean Std. prob.>0 Mean Std. prob.>0 Mean Std. prob.>0

Actual beliefs
Austria 2.425 0.567 1.000 1.948 0.241 1.000 0.402 0.209 0.970 1.087 0.257 1.000
Belgium 1.452 0.604 0.991 1.881 0.245 1.000 0.466 0.219 0.979 0.944 0.271 1.000
Denmark 4.243 0.635 1.000 2.894 0.279 1.000 0.858 0.217 1.000 1.934 0.267 1.000
Ireland 3.932 0.606 1.000 1.671 0.234 1.000 0.498 0.206 0.990 0.682 0.265 0.991
Luxembourg 2.986 0.604 1.000 3.116 0.274 1.000 0.783 0.222 0.999 2.075 0.273 1.000
Netherlands 2.115 0.567 1.000 1.547 0.233 1.000 0.175 0.217 0.794 0.589 0.273 0.981
Sweden 1.923 0.570 0.999 1.843 0.235 1.000 0.198 0.214 0.826 0.939 0.269 0.999
UK 1.554 0.565 0.995 1.571 0.235 1.000 0.326 0.214 0.934 0.263 0.283 0.829

All services affected
Austria 3.140 0.645 1.000 2.664 0.278 1.000 0.765 0.231 0.999 1.610 0.281 1.000
Belgium 2.228 0.680 0.999 2.678 0.292 1.000 0.882 0.245 1.000 1.515 0.301 1.000
Denmark 4.931 0.721 1.000 3.580 0.321 1.000 1.188 0.237 1.000 2.423 0.296 1.000
Ireland 4.852 0.713 1.000 2.524 0.281 1.000 0.962 0.232 1.000 1.290 0.291 1.000
Luxembourg 3.665 0.680 1.000 3.850 0.318 1.000 1.217 0.243 1.000 2.662 0.299 1.000
Netherlands 2.786 0.642 1.000 2.233 0.269 1.000 0.486 0.237 0.977 1.050 0.293 1.000
Sweden 2.548 0.643 1.000 2.612 0.279 1.000 0.546 0.237 0.989 1.478 0.293 1.000
UK 2.300 0.635 1.000 2.329 0.271 1.000 0.693 0.230 0.998 0.748 0.296 0.988

No services affected
Austria 2.311 0.866 0.996 0.729 0.366 0.977 −0.307 0.327 0.172 0.132 0.417 0.636
Belgium 1.399 0.855 0.949 0.743 0.351 0.982 −0.191 0.322 0.280 0.037 0.413 0.551
Denmark 4.101 0.909 1.000 1.645 0.377 1.000 0.116 0.334 0.641 0.945 0.421 0.985
Ireland 4.022 0.892 1.000 0.589 0.362 0.948 −0.111 0.324 0.374 −0.188 0.424 0.337
Luxembourg 2.835 0.857 0.999 1.915 0.363 1.000 0.145 0.322 0.678 1.183 0.414 0.997
Netherlands 1.956 0.856 0.988 0.298 0.360 0.798 −0.587 0.333 0.034 −0.428 0.433 0.158
Sweden 1.718 0.848 0.977 0.678 0.357 0.970 −0.527 0.325 0.050 0.000 0.422 0.516
UK 1.470 0.872 0.955 0.394 0.369 0.865 −0.380 0.337 0.122 −0.730 0.452 0.042
IS component 0.829 0.864 0.835 1.935 0.384 1.000 1.072 0.325 1.000 1.478 0.416 1.000

Mean = posterior mean, Std. = posterior standard deviation.
prob.(> 0) = share of posterior density to the right of zero.

observed in the actual sample (“actual”), (ii) all indicators set to
one (counterfactual belief that all of the services are impacted, “all
affected”), and all to set to zero (counterfactual belief that none of
the services are impacted, “none affected”). The last metric thus pro-
duces benchmark estimates for WTP related exclusively to the loss of
front-door electricity, net of (likely minor) savings due to non-use of
appliances. In all three cases predicted WTP estimates are averaged
over all individuals within a given country.

Numerical results are given in Table 7. The first block of rows
shows within-sample predictions based on actually observed beliefs
about IS impact. Thus, these estimates combine front-door and IS-
related values, as one would obtain without explicitly distinguishing
between the two components in the first place. As is evident from the
table, average hourly WTP is clearly positive for all country-scenario
combinations, and generally larger in winter than in summer. Inter-
estingly, average hourly WTP is generally lower for the longer winter
outage compared to the shorter winter scenario, but higher for the
longer summer outage compared to the shorter summer interrup-
tion. This suggests decreasing marginal costs over duration in winter
(perhaps due to gradual adaptation), and increasing marginal costs in
summer (perhaps due increasing food losses due to spoilage). Over-
all, hourly WTP in winter lies in the €1.50– €4.2 range, compared to
a range of €0.20– €2.1 for the summer.

The second block of rows shows posterior results for predicted
WTP, with all IS indicators set to one. This leads to an unambiguous
increase in values for all scenario-country combinations, with hourly
estimates now lying in the €2.2– €5.0 range for winter, and in the
€0.5– €2.7 range for summer. Conversely, WTP bare any IS effects,
as captured in the last block of rows is markedly reduced com-
pared to the within-sample, especially for the three outages lasting

longer than 1 h. In fact, with few exceptions (Denmark, Luxembourg)
WTP becomes statistically indistinguishable from zero for the two
summer outages once we abstract from IS impacts.16

Figs. 3, for winter, and 4 for summer present a graphical rep-
resentation of these posterior predictive distributions (PPDs). Each
subplot shows the PPD of the within-sample (“actual”) predictions,
with the PPDs for “none affected” and “all affected” super-imposed
for each case. As is evident from Fig. 3, there is considerable overlap
of the three distributions for the 1-h interruption for all eight coun-
tries. This is not surprising, as IS impacts will likely be a relatively
minor concern for such short interruptions for the typical resident.
In contrast, the “none affected” and “all affected” densities are clearly
pulled apart for the 24 h winter outage. The same holds for both
summer interruptions (Fig. 4). Thus, our predictive analysis lends
additional evidence to the fact that total WTP to avoid a residential
outage includes a sizable, and potentially dominating IS component.

Reassuringly, our WTP estimate for the 1-h winter outage for
Sweden for the “none affected” counterfactual (€1.72) lies within 30%
of the estimate produced by Carlsson and Martinsson (2007) based
on their Swedish 2004 data for a winter scenario of equal length, but
occurring earlier in the evening (6 pm compared to 8 pm in our case).
When converted to euros and adjusted for inflation their estimate

16 Our linear model leaves the support of predicted WTP unrestricted, which pro-
duces negative entries for several posterior means for the summer interruptions.
We also estimated our model with latent WTP in log form to restrict predictions to
the positive domain. However, with only three to four bids per scenario, the tails of
the implicit log-normal distributions are poorly characterized. This leads to exces-
sive posterior means for predicted WTP. We therefore opt to use the linear model for
inference.
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Table 8
Share of WTP attributable to infrastructure services.

Winter Summer

Service 1 h 24 h 4 h 12 h

Percent of total WTP
Medical 65.9% 48.8%
Payments 83.8%
Phone 38.4% 18.4% 91.2% 26.1%
Heating 19.5%
Transport 22.1% 57.4%
Sanitation 34.9% 42.8% 79.6% 38.9%

Percent of within-HH WTP
Phone 44.2% 50.8%
Heating 57.1%
Transport 66.3%
Sanitation 39.1% 117.2%

All entries are posterior means based on the full sample of 1807 households.
All entries are significant (have at least 90% of their posterior distribution >0).
Empty or missing cells reflect cases for which either incremental WTP for a given
infrastructure service and/or within-HH baseline WTP are either negative or not
significantly different from zero.

amounts to €2.42. In that study, the authors took great care to stress
to respondents that payment of the proposed bid would only guard
against front-door losses, so our “none affected” result is the appro-
priate measure stick for comparison. The residual gap between the
two estimates is likely due to the difference in the stipulated time
of onset for the interruption and potential shifts in preferences of
power provision over the decade that separates their data from ours.
Reichl et al. (2013) report an average hourly WTP of €1.9 across all
of their outage scenarios for their 2009 sample of Austrian house-
holds, which varied in season and duration in similar fashion to
our design. In their analysis, respondents were directly instructed to
expect IS failures when making a payment decision. Thus, the most
relevant measure for comparison are our hourly predictions from
the “all affected” counterfactual, which, for Austria, range from €0.8
(summer, 4 h) to €3.1 (winter, 1 h), and thus bracket Reichl et al.’s
aggregate result, as expected.

To gain a sense of the relative proportions of WTP related to front-
door losses and values related to disrupted IS services we compute
IS values as percentage of total WTP and as percentage of front-door
WTP for all IS services that emerged as significant for a given sce-
nario for the full sample of households. For the comparison relative
to front-door WTP can only use winter scenarios since, as discussed
above, the benchmark WTP for front-door effects is essentially zero
for summer interruptions and the typical household.

The resulting percentages are captured in Table 8. In terms of
overall hourly WTP, the share of IS-related values ranges from close
to 20% to over 40% for winter interruptions, and from 26% to over 90%
for our summer scenarios. If we use front-door losses as benchmark,
WTP to secure IS services ranges from close to 40% to over 100% of
the amount associated with front-door losses alone.

In summary, we conclude that IS-related values play an important
role in outage cost estimation. This makes it crucially important to
either explicitly abstract from them or explicitly include them in SP
approaches to the valuation of the reliability of power provision. If IS
effects are ignored, but considered by respondents during value elic-
itation, resulting WTP estimates will likely by substantially inflated
if they are interpreted as pure values for front-door service.

4. Conclusion

This study shows how the essential-input property of electric-
ity in the provision of household commodities can be exploited to
dis-entangle welfare effects related to power delivered to the “front
door” from values related to the disruption of vital infrastructure

services. Specifically, we illustrate how the popular surplus model
based on Random Utility Theory combines naturally with a house-
hold production framework with electricity playing the central role
of an essential input. Using a survey-based identification strategy,
we partition total WTP to avoid a specific power interruption into
front-door and IS effects.

Though our welfare estimates for ISs can only be interpreted as
lower bounds given the limitations of our empirical data, our find-
ings provide strong evidence that a considerable portion of total WTP
to avoid an outage relates to the loss of public services. We find our
sample of households from eight EU nations to be especially sensi-
tive to a disruption of medical, communication, transportation, and
sanitation services. This stresses the importance of explicitly specify-
ing the scale of outages and their expected impact on IS components
in SP elicitation. Either a convincing statement needs to be made
to respondents that stipulated outages are highly localized, leaving
ISs unaffected, or survey participants should be prompted to think
about IS impacts (or given information on potential IS effects) when
confronted with interruption scenarios that cover a larger spatial
scale. Failure to do so will produce welfare estimates that are unfit to
inform policy.

From a public policy perspective, our findings are perhaps best
interpreted as strong evidence that a widespread loss of power
harms residential customers through more than just the interrup-
tion of front-door service. Protecting vital elements of the public
infrastructure may be just as important, if not more so, than assuring
adequate power flow to the neighborhood grid. From a EU stand-
point our findings stress the importance of the planned expansion
of the electric transmission network to improve inter-regional con-
nectivity and grid reliability, since large-scale, IS-impacting outages
are frequently caused by transmission failures (Buldyrev et al., 2010;
European Commission, 2012; ENTSO-E, 2012). Taking our results as a
first indication, the welfare gains from increased reliability of power
provision due to a strengthening of the transmission grid could be
potentially much larger than one would conclude from past valua-
tion studies that only focused on front-door effects, especially in light
of increasing threats to the grid due to climate change.

Our findings also raise concerns surrounding the use of nor-
malized outage costs based on “WTP/kwh unserved” to facilitate
inter-study comparison (e.g. Doane et al., 1988a; Doane et al., 1988b;
Woo et al., 1991; Beenstock et al., 1998; Layton and Moeltner, 2005;
Carlsson and Martinsson, 2007). For this common metric “unserved”
refers to the front-door load that would have been normally con-
sumed by the household in absence of a given interruption. However,
in cases where the scale of a hypothetical interruption is left to
the guess of the respondent, such WTP/kwh estimates will be mis-
leading, since WTP may refer to much broader damages than those
that could be fixed by leaving front-door service intact. Specifically,
if WTP comprises IS components but WTP/kwh is meant to apply
exclusively to front-door losses and consumption, the numerator and
thus the entire fraction will be inflated. If WTP/kwh is meant to hold
for all losses (front-door plus IS) the denominator would have to
be computed as the sum of front-door consumption plus per-capita
electricity consumption that would have fed into IS’s for the metric
to have any meaningful interpretation.

Naturally, our study is best thought of as a starting point for a
more in-depth analysis of infrastructure values, using hypothetical
scenarios on power outages and stated preference methods as iden-
tification vehicle. Our modest sample sizes and lack of hierarchical
depth in our data layers preempts any examination of individual
or even country-level heterogeneity in IS-related preferences. Fur-
thermore, it would be desirable in subsequent research to ask the
IS-perception question for each stipulated outage, perhaps with
more detailed probing of how exactly loss-of-service would affect
the household. A more surgical approach could also be taken by
focusing exclusively on a single IS, for example public transportation,



J. Cohen et al. / Energy Economics 73 (2018) 258–273 273

and assuring respondents that other ISs would remain unaffected.
This could be further developed to allow for quality changes in ser-
vice, instead of or in addition to the all-or-nothing condition implicit
in our scenarios.

At a more general level, our study provides insights on the
broader economic values at stake if the electricity sector is not pro-
tected against the increasing threats related to climate change. It
also offers a glimpse into the direct values-at-risk related to other
infrastructure services, thus adding to the “limited set of published
studies” that have examined the potential impacts of climate change
on public services using a quantitative approach (Arent et al., 2014).
While adaptive measures will need to be taken to increase the
resilience of all of these elements of the public infrastructure, the
power grid clearly deserves special attention due to the essential
input property of electricity.
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