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Two forces are likely to have a negative impact on electricity 
supply security in Europe over the next decades. The first is 
increases in renewable generation capacity, which stresses the 

transmission and distribution grids with intermittent generation1. 
The second is climate change. The predicted climactic changes of 
increased temperatures, increased winds and storms, extreme high 
temperatures and ice storms can cause damage to the electricity 
grid and subsequent power outages2. However, there are numerous 
potential adaptations that could reduce the probability of power 
outages, such as rerouting transmission lines, installing external 
coolers to transmission components and enhancing stability stan-
dards for pylons. These adaptations will be costly and thus should 
be installed in regions where there is great risk of climate-related 
grid damage and/or regions where power outages will cause the 
largest costs to society. Furthermore, grid investments made today 
will affect supply security for years to come3. To ensure that the 
EU invests in measures to mitigate the risk of power outages to the 
socially optimal degree, an understanding of the costs of power out-
ages and how these costs will change over time with global warming 
is necessary.

Previous studies have investigated the value of electricity supply 
security in the EU, estimating the value of supply security for indi-
vidual EU nations4–7. Results from these analyses suggest that the 
welfare losses from blackouts vary on the basis of the duration of the 
outage, and the season and country in which the outage takes place, 
with losses being in the range of €​15–25 per kWh not supplied4,5,7,8. 
A study of WTP to avoid blackouts in Cyprus found that residents 
have WTP of about €​0.20 and €​0.78 to avoid an hour of summer or 
winter power outage, respectively9. However, no past study on the 
topic has allowed for a comparison of the effects of power outages 
across a large sample of nations using consistent methodology and 
data. Moreover, no past research has considered the effects of tem-
peratures on welfare losses from power outages. Temperature has 
been shown to be one of the most important drivers of household 
electricity consumption, where more extreme temperatures lead 

to more electricity consumed10–12. This is unsurprising given that 
nearly 65% of household energy consumption in the EU is used for 
space heating13.

This paper fills these gaps in the literature by estimating the wel-
fare losses from longer-term power outages using data that cover 19 
EU nations. Furthermore, we model these welfare losses as func-
tions of temperature. Given the observed relationship between tem-
perature and electricity use, we posit that power outages at times 
of extreme temperature will cause larger welfare losses than power 
outages at times of mild temperature. In high-income nations, 
global-warming-induced temperature increases are predicted to 
be the dominant factor driving future changes in energy use2. We 
use climate change predictions from the Hadley CM3 to show how 
future increases in temperature will change the value of uninter-
rupted electricity, and the spatial distribution thereof. Our results 
confirm the hypothesis that local temperature at the time of the out-
age drives the welfare cost per hour of outage, with summer outages 
being more costly during higher temperatures, and winter outages 
being more costly during lower temperatures. Given the predicted 
temperature effects of global warming, we use our results to show 
that summer outages will become substantially more costly while 
winter outages will become slightly less costly, per affected house-
hold and hour of outage, over this century.

Temperatures drive the welfare loss from power outages
To estimate the welfare losses from power outages in our sample of 
EU nations, we match data obtained from a combined phone-and-
postal survey, containing a choice experiment, to temperature data 
from the European Climate Assessment and Dataset ENSEMBLES’s 
project ‘E-OBS’ gridded data set, which contains imputed daily tem-
peratures across Europe14. Figure 1 shows the distribution of average 
January and July temperatures across the EU. The choice experiment 
included in each survey presented respondents with hypothetical 
unplanned power outage scenarios and asked whether they would 
pay a varying bid price to avoid each scenario. These hypothetical 
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power outages occurred in either January, the winter month, or July, 
the summer month. Along with the choice experiment, the survey 
obtained demographic and power outage history information from 
each respondent. The temperature measure used in the analysis is 
the monthly average temperature for either January or July, con-
structed from daily averages, averaged over the past ten years from 
the time the survey was taken. Other measures of temperature were 
tested with similar results (see Supplementary Note 1).

We posit that a causal relationship between WTP to avoid a 
power outage and temperature is driven, in large part, by the use 
of ambient heating and cooling devices. As temperatures become 
more extreme, more people will turn on their heaters or air con-
ditioners and they will experience greater discomfort if these elec-
tricity-dependent systems are inoperable. However, the threshold 
temperature at which a person switches on their heating or air con-
ditioning units is unlikely to be the same between regions with dif-
ferent climates and cultures. In some areas, air conditioner and/or 
heating units may not even be widely available. We account for this 
difference between regions by two methods. The first is by includ-
ing country fixed effects in our statistical model that will account for 
general discrepancies between nations including the use of heating 
and cooling devices. The second method is to split our temperature 
variable into three groups using Jenks natural breaks based on the 
average temperatures in each nation. This will allow for tempera-
ture to have a different effect on WTP depending on the prevailing 
climate of the nation and thus account for cultural or technological 
differences in how people cope with uncomfortable temperatures. 
Cold nations are those in the North or Alpine regions: Austria, 
Belgium, the Czech Republic, Finland, Germany, UK, Sweden and 
the Netherlands. Mid nations are: Lithuania, Slovakia, Poland, 
France and Slovenia. Warm nations are those in the southern, 
Mediterranean region: Hungary, Bulgaria, Portugal, Romania, Italy 
and Spain. These groupings of nations affect only our temperature 
measure; other differences between the cultures and energy needs of 
nations are captured in nation-specific fixed effects.

We model welfare losses from power outages as the respondents’ 
WTP to avoid outages of specified characteristics. Each respon-
dent’s WTP is a function of their own history with power outages, 
demographic information, country of residence, scope of the outage 
(whole country versus local), and the average temperature in their 
area in the month of the outage. These variables are summarized in 
Table 1. Table 2 gives a comparison of explanatory variable means 

across our 19 sample nations, as well as the number of respondents 
in each nation. This table highlights the cross-country heterogene-
ity in many dimensions within our sample nations. The marginal 
effects for the dependent variables that explain respondents’ WTP 
are given in Table 3. The marginal effect of the ‘urban’ variable shows 
that residents of urban areas are willing to pay more to avoid power 
outages, probably due to concern that the outage would effect nearby 
desirable infrastructure, such as hospitals or traffic systems. The 
results from the demographic variables suggest that older residents  

Average January temperatures (2003–2012) Average July temperatures (2003–2012)
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Fig. 1 | Monthly average temperatures across the EU. These monthly average temperatures are calculated from daily averages of E-OBS data. Nations in 
our sample of 19 are outlined; darker colours denote regions with higher average temperature.

Table 1 | Summary statistics of explanatory variables

Variable Description Mean s.d. Min. Max.

urban Lives in urban area 0.27 0.45 0 1

male Is male 0.46 0.50 0 1

age35t45 Between age 35 
and 45

0.18 0.39 0 1

age46t60 Between age 46 
and 60

0.36 0.48 0 1

over60 Over age 60 0.41 0.49 0 1

hhsize Members in 
household

2.66 1.24 1 6

college College degree 0.40 0.49 0 1

out1t4 Experienced 
1–4 hour outage

0.32 0.47 0 1

out4t8 Experienced 
4–8 hour outage

0.12 0.32 0 1

out8t24 Experienced 
8–24 hour outage

0.07 0.26 0 1

over24 Experienced over 
24 hour outage

0.04 0.20 0 1

numoutages Number of outages 
in past year

3.14 4.42 0 25

rotation Outage scenario 
ordering

0.51 0.50 0 1

wholecountry Outage effects 
entire country

0.50 0.50 0 1

21,832 observations from 2,729 respondents; zis vectors also contains country indicator variables.
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are willing to pay more while males are willing to pay less. The 
marginal effects of household size and college education are con-
sidered inconclusive. A respondent’s history with power outages is 
also shown to drive their WTP, as respondents who have recently 
experienced a long outage of over 4 hours (‘out4t8’ and ‘outover24’) 
are willing to pay less to avoid future outages. This is probably due 
to a readiness factor, whereby these respondents have prepared for 
future outages by, for example, buying flashlights, candles or per-
haps even a generator. The scenario specific variable ‘wholecountry’ 
shows by far the largest marginal effect on WTP, which demon-
strates that outages that affect a larger geographic region have a 
larger negative welfare impact. Again this is probably due in part 
to the loss of valued infrastructure outside the home, and perhaps 
altruism where the respondents are concerned with the effects of 
the outage on friends and family.

The marginal effect of the temperature variables are highly sea-
son-dependent—being strongly negative in the winter and strongly 
positive in the summer. This is to be expected since increases in 
summer temperatures will increase the need for indoor cooling and 
thus the discomfort from a power outage, while increases in win-
ter temperatures will reduce the need for heating and consequently 
decrease the discomfort from a winter outage. We also see that the 
effect of temperature on WTP is heterogeneous across our groups of 
nations, with lower winter temperatures having a stronger effect on 
WTP in colder nations, while higher summer temperatures gener-
ally have a stronger effect in warmer nations.

Global warming and the welfare loss from power outages
Using the results of the model, we calculate the average WTP to 
avoid one hour of summer or winter power outage for each nation 
in our sample. We dub this quantity ‘hourly WTP’. The estimates 
of hourly WTP under current temperatures are given in Table 4, in 
the columns labelled ‘current’. All WTP estimates are given in 2012 
denominated Euros. We then use predictions of future tempera-
tures from the Hadley CM3 under climate scenario A1B to predict 
how the hourly WTP in each country will change over time due 

to global warming. The imputation of WTP through time assumes 
that energy-related preferences remain stable and that no major 
changes to the structure of European society occur, such as rural–
urban migration, and demographic change. Thus, our imputations 
should be interpreted as comparative-static cases where only tem-
peratures change over time. The results illustrate the high level of 
heterogeneity in WTP to avoid power outages across our sample 
nations. Differences in WTP between nations are in part driven by 
observed variables, such as income disparities and temperature dif-
ferences; however, unobserved country-level factors also strongly 
drive differences in WTP. These unobserved factors are accounted 
for in our econometric model through country-level fixed effects 
and may include differences in electricity infrastructure and tar-
iffs, institutional differences and preference heterogeneity across 
nations. Data representing some of these factors are shown in 
Table 5. Also notable for our application is that mean WTP in the 
summer is lower than in the winter for every nation in our sample. 
This reflects the greater proliferation and importance of heating 
appliances as opposed to air conditioners in the average European 
household. We see that over time, as temperatures are predicted 
to increase, summer power outages cause greater welfare losses 
while winter outages cause lower welfare losses per hour of out-
age. Warmer nations are predicted to have relatively large increases 
in welfare loss from summer outages with very small decreases in 
welfare loss from winter outages, per person and per hour of out-
age. Colder nations are predicted to have the largest decreases in 
welfare loss from winter outages due to milder temperatures, with 
a nearly offsetting increase in welfare loss from summer outages, 
per person per hour. Mid nations are predicted to have the largest 
increase in welfare loss from summer outages and a nearly offset-
ting decrease in welfare loss due to winter outages. These differ-
ences between groups of nations are driven in the model by the 
differing temperature coefficients between our groups of nations, 
and in reality are probably driven by the different distributions of 
temperature between groups and the countries’ use of heating or 
cooling technologies.

Table 2 | Cross-country comparison of sample means

Income Male Age Hhsize College Urban Numoutages No. respondents

France 30,006 0.44 51.17 2.75 0.40 0.18 3.37 158

Germany 31,181 0.59 57.75 2.55 0.51 0.08 1.17 130

Italy 24,300 0.40 54.64 2.68 0.30 0.32 3.43 161

UK 26,661 0.50 53.41 2.88 0.35 0.10 2.06 146

Austria 29,235 0.56 53.86 3.03 0.31 0.13 2.62 151

Belgium 26,718 0.53 50.10 2.48 0.52 0.42 1.86 173

Finland 27,753 0.47 61.49 1.88 0.41 0.13 2.54 83

Netherlands 21,753 0.47 55.48 2.01 0.24 0.20 1.10 154

Spain 22,177 0.51 53.66 2.97 0.46 0.53 2.86 148

Sweden 26,012 0.65 58.80 1.94 0.34 0.15 1.43 99

Portugal 15,643 0.52 52.77 2.99 0.32 0.30 3.87 119

Bulgaria 4,139 0.37 52.58 2.70 0.59 0.63 5.41 132

Czech Republic 10,239 0.51 56.66 2.59 0.45 0.28 2.74 136

Hungary 5,399 0.33 57.64 2.70 0.31 0.10 5.23 172

Lithuania 5,515 0.28 55.38 2.65 0.62 0.11 2.56 151

Poland 7,141 0.47 57.33 2.77 0.42 0.41 3.62 159

Romania 3,196 0.44 55.61 2.76 0.48 0.52 7.38 140

Slovakia 7,556 0.39 55.86 2.88 0.37 0.24 3.19 156

Slovenia 14,832 0.41 57.07 2.76 0.30 0.29 2.63 161

2,729 total respondents; age mean constructed from 4 age categories by taking the middle value of each category and using 68 for those over 60; variables are defined in Table 1.
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We show these results in cartographic form in Fig. 2 by imput-
ing WTP across our 19 sample nations and through time using the 
predicted temperature increases from the Hadley CM3 under the 
A1B scenario. This illustrates how the spatial distribution of WTP 
will change in the future as the climate warms. Initially, winter WTP 
is much higher than summer WTP across our sample of Europe. 
However, with predicted warming, this difference narrows, espe-
cially in the southern, Mediterranean region of Europe where sum-
mer WTP is highest due to higher temperatures. Also of interest is 
that these southern regions are predicted to see little change in the 
value of supply security in the winter due to global warming.

To gain an understanding of how temperature increases will effect 
the value of the electricity supply on the aggregate in Europe, we cal-
culate the total WTP to avoid an hour of power outage affecting an 
entire nation, by season, as shown in Table 6. This is done by multi-
plying the average hourly WTP to avoid a whole country outage in 
each NUTS 3 (Nomenclature of territorial units for statistics) region 
by the 2010 population estimate in that region. The results again 
highlight the heterogeneity between nations, both in their vulner-
ability to power outages, and in how this vulnerability will change 
over time with increased temperatures. In total across our sample of 
countries, the hourly welfare loss from a winter power outage that 
affects an entire country is predicted to decrease by about 3%, or  
€​21.7 million, by 2055 and by about 6%, or €​48.9 million, by 2089. In 
the summer, welfare loss from an hour of power outage that affects 
entire nations is predicted to increase by about 20%, or €​56.4 million, 
by 2055 and by about 35%, or €​100.1 million, by 2089. Welfare loss 
from summer outages is predicted to increase at a faster rate than the 
welfare loss from winter outages decreases. Consequently, the hourly 
welfare loss from power outages across our sample will increase by 
about 3% by 2055 and 6% by 2089, averaged over seasons.

Conclusion
Overall, the results confirm our hypothesis that the value of an 
uninterrupted electricity supply is strongly related to local tem-
peratures. With respect to the value of supply security in the 
future, the results have two main takeaways. The first is that as 
global warming progresses the hourly welfare lost to summer 
outages will increase while the hourly welfare lost to winter out-
ages will decrease, increasing the importance of securing the grid 
from summertime outage causes, such as heatwaves. Secondly, the 
results suggest that overall hourly WTP across our sample, aver-
aged across seasons, will increase as the climate warms, suggest-
ing that the importance of supply security to the average European 
household will increase as a result of climate change. All else equal, 
increases in renewable energy generation are projected to increase 
the likelihood of power outages. A substantial portion of the €​150 
billion investment in electricity infrastructure needed to reach the 
EU’s 2030 greenhouse gas targets will also improve electricity sup-
ply security by increasing grid interconnections15. This research 
suggests that these investments should be planned to account for 
changes in the value of supply security that global warming will 
bring to the EU.

Methods
Econometric model. We specify each respondent i’s indirect utility representation 
for two cases for each outage scenario s ∈​ {1…​S}: in the event of a power outage 
with the characteristics stipulated by s denoted as ∼v *is , and in the event that they pay 
to avoid such an outage denoted as ∼vis.

γ β

γ

= − ′ + ϵ

= − + ϵ

∼

∼

∼

∼
v m d d

v m P d

D* *

( )
(1)

is i i s s is s is

is i i is s i0

where mi is the household income of respondent i, Pis is the bid price entered as a 
positive number and ds is the outage duration measured in hours. The row vector 
Ds holds our season indicators; season refers to either winter (Ds1 =​ 1, else 0) or 
summer (Ds2 =​ 1, else 0), which are represented by single months, January and July. 

Table 3 | Marginal effects of explanatory variables on hourly 
WTP (2012)

5% 
quantile

Mean 95% 
quantile

prob>0

Winter

urban −​0.055 0.016 0.083 0.6400

male −​0.062 −​0.002 0.056 0.4653

age35t45 −​0.123 0.008 0.136 0.5475

age46t60 −​0.074 0.052 0.18 0.7539

over60 −​0.028 0.099 0.23 0.9430

hhsize −​0.022 0.004 0.031 0.5878

college −​0.051 0.006 0.064 0.5812

out1t4 −​0.031 0.033 0.101 0.8008

out4t8 −​0.142 −​0.047 0.047 0.1931

out8t24 −​0.217 −​0.101 0.011 0.0638

outover24 −​0.202 −​0.053 0.087 0.2550

numoutages −​0.005 0.002 0.009 0.6738

wholecountry 0.448 0.732 0.935 1.0000

rotation 0.028 0.091 0.155 0.9960

Temperature—cold 
nations

−​0.0956 −​0.0516 −​0.0067 0.0113

Temperature—mid 
nations

−​0.0707 −​0.0309 0.0100 0.1010

Temperature—
warm nations

−​0.0333 −​0.0065 0.0201 0.3560

Summer

urban 0.0080 0.1270 0.2470 0.9566

male −​0.1980 −​0.1000 0.0030 0.5290

age35t45 −​0.2550 −​0.0260 0.1970 0.4366

age46t60 −​0.0570 0.1620 0.3900 0.8763

over60 −​0.0240 0.2030 0.4340 0.9172

hhsize −​0.0440 0.0000 0.0430 0.4954

college −​0.1300 −​0.0300 0.0660 0.3195

out1t4 −​0.1260 −​0.0100 0.0990 0.4423

out4t8 −​0.2080 −​0.0460 0.1180 0.3198

out8t24 −​0.4490 −​0.2610 −​0.0700 0.0137

outover24 −​0.4320 −​0.1910 0.0650 0.1120

numoutages −​0.0080 0.0050 0.0170 0.7277

wholecountry 0.3270 0.4070 4.7800 1.0000

rotation −​0.1250 −​0.0250 0.0740 0.3307

Temperature—cold 
nations

−​0.0017 0.0359 0.0743 0.9328

Temperature—mid 
nations

0.0183 0.0575 0.0969 0.9881

Temperature—warm 
nations

0.0044 0.0359 0.0389 0.9544

The model also includes country fixed effects. Marginal effects for each variable are calculated  
for one-unit increases from the sample mean, with all other variables fixed at the sample  
mean. The posterior distribution of each parameter is the estimation output, the ‘mean’  
column gives the mean of this empirical distribution for each marginal effect that can be 
interpreted as the change in WTP to avoid one hour of power outage, which we dub ‘hourly WTP’, 
from a one-unit increase in the respective variable. The ‘prob >​ 0’ columns show the proportion  
of the density that falls to the right of zero, and thus provides an at-a-glance indication for  
whether a given marginal effect is predominantly positive, negative or indeterminate. Also shown 
are the 5% and 95% quantiles of the distributions of each parameter to relate the variance  
of the marginal effect estimates. Quantiles were calculated via the highest probability  
density method.
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The error terms capture scenario-specific factors that are unobserved yet affect 
utility. The slope coefficient β​*is is the marginal change in repondent i's indirect 
utility due to an hour of power outage with characteristics s. The error terms are 
scaled by the duration of the outage ds, to account for the larger variance in indirect 
utility associated with longer outages. Lengthy outages expose individuals to a 
wider variety of potential nuisances with greater extremes. For instance, a short 

outage may ruin a meal in the midst of being cooked, while a longer outage  
could ruin a series of meals that would have been cooked and spoil the entire 
freezer full of food. We can show the model in ‘utility-space’ by subtracting the 
above two utilities.

β γ= − = ′ − + ϵ −ϵ∼ ∼∼ ∼v v v d P dD* * * ( ) (2)is is is s s is i is s i is0

Table 4 | Mean WTP to avoid one hour of power outage by country and season and time period (2012 €​)

Winter Current Winter 2055 Winter 2089 Summer Current Summer 2055 Summer 2089

France 0.52 (0.14) 0.47 (0.98) 0.43 (0.98) 0.00 (0.11) 0.02 (0.92) 0.18 (0.92)

Germany 1.29 (0.36) 1.21 (1.17) 1.10 (1.17) 0.46 (0.15) 0.56 (0.92) 0.64 (0.92)

Italy 1.84 (0.31) 1.84 (1.27) 1.83 (1.27) 0.58 (0.19) 0.73 (1) 0.83 (1)

UK 1.02 (0.25) 0.94 (0.94) 0.90 (0.94) 0.41 (0.1) 0.48 (0.83) 0.54 (0.83)

Austria 0.88 (0.42) 0.77 (1.17) 0.66 (1.17) 0.48 (0.19) 0.58 (0.95) 0.65 (0.95)

Belgium 0.95 (0.27) 0.87 (1.04) 0.80 (1.04) 0.43 (0.11) 0.54 (1.02) 0.63 (1.02)

Finland 1.59 (0.56) 1.46 (1.41) 1.32 (1.41) 0.73 (0.29) 0.82 (1.04) 0.88 (1.04)

Netherlands 0.84 (0.27) 0.78 (0.97) 0.69 (0.97) 0.31 (0.1) 0.38 (0.82) 0.43 (0.82)

Spain 1.85 (0.28) 1.85 (1.25) 1.84 (1.25) 0.69 (0.17) 0.81 (1.1) 0.89 (1.1)

Sweden 1.34 (0.38) 1.26 (1.31) 1.14 (1.31) 0.52 (0.19) 0.62 (1.1) 0.67 (1.1)

Portugal 1.28 (0.19) 1.27 (0.94) 1.27 (0.94) 0.43 (0.12) 0.55 (0.82) 0.64 (0.82)

Bulgaria 1.72 (0.33) 1.72 (1.31) 1.70 (1.31) 0.45 (0.17) 0.57 (1.05) 0.69 (1.05)

Czech Republic 0.75 (0.35) 0.67 (1.11) 0.54 (1.11) 0.30 (0.12) 0.38 (0.95) 0.45 (0.95)

Hungary 1.43 (0.35) 1.43 (1.1) 1.41 (1.1) 0.42 (0.21) 0.55 (0.94) 0.65 (0.94)

Lithuania 0.95 (0.4) 0.92 (1.1) 0.78 (1.1) 0.20 (0.15) 0.36 (0.92) 0.46 (0.92)

Poland 1.33 (0.51) 1.29 (1.17) 1.19 (1.17) 0.61 (0.27) 0.78 (1.02) 0.88 (1.02)

Romania 1.45 (0.33) 1.44 (1.24) 1.42 (1.24) 0.53 (0.18) 0.66 (1.2) 0.75 (1.2)

Slovakia 0.98 (0.4) 0.93 (1.11) 0.84 (1.11) 0.32 (0.16) 0.51 (1.01) 0.64 (1.01)

Slovenia 1.99 (0.46) 1.93 (1.35) 1.87 (1.35) 0.89 (0.23) 1.13 (1.18) 1.30 (1.18)

Standard errors given in parentheses. Negative estimates were censored at 0. The period 2046–2065 is referenced as year 2055 and the period 2080–2099 is referenced as 2089.

Table 5 | Comparison of supply security and energy statistics across our sample of 19 EU nations

Household kwh 
consumed per capita

Price per mwh 
(Euros)

Avg. no. of outages 
experienced last yr

SAIFI 2012 (or most 
recent year)

SAIDI 2012 (or most  
recent year)

France 2.42 13.92 2.62 0.9 62.9

Germany 1.71 25.95 1.22 0.29 17.37

Italy 1.17 21.32 3.60 2.33 132.73

UK 1.81 16.82 1.98 0.65 68.05

Austria 2.09 19.75 2.22 0.73 38.78

Belgium 1.79 23.27 1.96 0.81 39.45

Finland 4.14 15.49 3.13 1.1 68

Netherlands 1.50 18.58 1.09 0.32 27

Spain 1.60 21.90 2.99 1.42 (2011) 58.2 (2011)

Sweden 4.10 20.27 1.71 1.33 89.01

Portugal 1.22 19.93 3.43 1.88 94.15

Bulgaria 1.48 8.46 6.47 4.65a (2010) 197.24a (2010)

Czech Republic 1.39 14.97 2.99 1.9 125.2

Hungary 1.07 15.49 4.70 1.17 76.89

Lithuania 0.88 12.60 2.77 1.82 287.73

Poland 0.73 14.18 4.33 1.4 263.19

Romania 0.60 10.50 6.59 6.5 (2009) 630a

Slovakia 0.88 17.16 3.40 2.15a 303.1a

Slovenia 1.54 15.42 3.32 2.99 169

Data sources in order of variables: Eurostat 2012; Eurostat 2012 ‘Price to Residential Consumers’; ref. 19; ref. 26; ref. 26. SAIFI is defined as the avg. annual power outages per customer; SAIDI is the average 
number of minutes of unplanned power outage per customer. aThese figures exclude exceptional events, while all other SAIDI/SAIFI figures include exceptional events.
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We elect to estimate this model in ‘surplus’, or ‘WTP space’ for ease of 
interpretation and estimation. Thus, we divide through the previous equation by 
the marginal utility of income γi. This yields vis, which can be interpreted as the 
difference between the full WTP to avoid the outage in menu s and the bid price to 
avoid the outage. We will observe a positive response to the survey question when 
vis >​ 0, indicating that the respondent increases their utility by paying the bid price 
rather than experiencing the outage. Previous studies have found that estimations 
in WTP space perform better than those in utility space by avoiding excessively 
long tails on predicted WTP16,17. These long tails arise due to the fact that in a 
utility-space model, as in equation (2), marginal WTP is derived as β

γ

*is
i
. With a very 

small income parameter (γi), as is often the case, an inflated WTP estimate can 
arise. By using the WTP-space method in equation (3), we avoid this problem and 
estimate one parameter (βis) for the marginal WTP. This WTP-space specification 
produces more accurate estimates for a variety of specifications16. However, this 
modelling choice comes at the expense of not being able to estimate the marginal 
utility of income γi, independent from other parameters. However, γi is not a 

construct of interest in our present analysis. Also note from equation (3) that 
we allow for heteroskedasticity at the respondent level σ( )i

2  through respondent-
specific random effects.

β

β
β
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From equation (3) our parameter of interest is vector βis, which can be 
interpreted as the marginal hourly WTPs per season of person i when confronted 
with outage scenario s. Next we add structure to βis by introducing the matrix α, 

Summer WTP Winter WTP

WTP(Euros per hr)

0–0.33 
0.33–0.66
0.66–1
1–1.33
1.33–1.66
1.66–2
>2

Current hourly WTPa

b

c

Summer WTP Winter WTP

WTP(Euros per hr)

0–0.33 
0.33–0.66
0.66–1
1–1.33
1.33–1.66
1.66–2
>2

Hourly WTP in 2055

Summer WTP Winter WTP

WTP (Euros per hr)

0–0.33 
0.33–0.66
0.66–1
1–1.33 
1.33–1.66
1.66–2
>2

Hourly WTP in 2089

Fig. 2 | Hourly WTP across our sample of 19 European nations. a−c, Mean estimated WTP to avoid an hour of power outage imputed across space within 
our 19 sample nations. Imputations are based on the country mean WTP and the temperature in each area. Comparing panels a, b and c shows how the 
spatial distribution of WTP will change across our sample as temperatures warm over the century. Standard errors associated with each country’s mean 
WTP estimate are given in Table 4. a, Hourly WTP in 2012; b, imputed hourly WTP in 2055; c, imputed hourly WTP in 2089.
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which holds the vectors of season-specific coefficients α =D 1s1  and α =D 1s2 , where 
we reference both subscripts as ‘.’ where possible to avoid overlong formulae:

αβ β
α α α β

= + .
= + + + … +

′. .

. .. .z z z
z(1 )

(1 ) ,
is is i

i i k ik i1 1 2 2

where errors are considered correlated across seasons, such that

















̄β β δ
β

β
= = +=

=

′
, (4)i

i

i
i

D

D

1

1

s

s

1

2

and with δ Ω~ N(0, )i  the moments for βis. are then defined as:

̄α
α α

β β
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E z
V z z
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( ) (1 ) (1 )
is is
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Thus, βis is expressed as a function of observable and unobservable (βi) 
characteristics, where zis is our vector of observed variables that explain 
an individual’s deviation from season-specific mean marginal WTP. These 
observable characteristics come in two forms, those that are respondent specific, 
indexed by i, and one scenario-specific characteristic, indexed by s. The one 
scenario-specific characteristic is an indicator variable, which takes a value of 
one if the outage scenario s stipulated an outage that affects the entire country 
where the individual resides. We call this variable ‘wholecountry’. Also included 
in zis are country indicator variables that account for unobserved heterogeneity 
in WTP for supply security between nations. All variables included in zis are 
centralized around their respective mean to allow interpreting ̄β  as mean WTP 
over all respondents and all scenario characteristics, and to achieve better mixing 
properties of the Markov chain Monte Carlo sampler. Each α. vector contains 
one coefficient for each of our k explanatory variables and relates these variables 
to deviations in marginal WTP. The average estimated hourly WTP to avoid a 
power outage is represented by ̄β , and δi captures individual-specific unobserved 
heterogeneity in deviations from ̄β .

Let yi be the vector of observed binary responses of individual i to each 
outage scenario s where a 1 denotes that the respondent accepted the bid price 
and a 0 denotes rejection of the bid price. A response of 1 will be observed when 
vis >​ 0. From the error specification in equation (3), we can write the likelihood 

contribution of individual i and scenario s as a standard normal cumulative 
distribution function conditioned on βis and σi

2.
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where Φ​ represents the normal cumulative distribution function. Using this 
likelihood, we then draw from the posterior distribution via a Gibbs sampler. For 
more details on the sampling procedure, see the Supplementary Methods.. The 
final model output is 10,000 draws of each estimable parameter. In the case of 
β =Di 1s1 , 85.9% of these draws are positive, and for β =Di 1s2 , 70.3% of these draws are 
positive. Using the parameter draws, we then calculate the hourly WTP to avoid 
a power outage (βis in equation (3)) by country and season. This is an in-sample 
calculation that loops over all 10,000 usable draws of each parameter (α. and βi) 
to calculate αβ β= + ′

. . .z(1 )is is i  for each of the 21,832 scenario/respondent specific 
observations for both summer and winter. This results in 10,000 draws from an 
empirical distribution of βis for each observation. These draws are summarized by 
country to yield the results in Table 4.

We can then predict how increased temperatures will affect WTP by changing 
the temperature measures linked to each respondent (that is, changing an element 
of zis). We calculate the predicted change in air temperature for July and January 
across all of Europe using the 2020–2039 Hadley CM3 output under the Special 
Report on Emissions Scenarios (SRES) A1B scenario as the baseline. The A1B 
scenario and other comparative cases come from the Intergovernmental Panel on 
Climate Change SRES report18. The calculation yields predictions of temperature 
change at a resolution of 2.75° latitude and 3.75° longitude for three scenarios and 
two future time periods, 2046–2065 and 2080–2099. We then add these predictions 
to the 2012 temperatures from the E-OBS gridded data set to create predictions 
of future temperature at 0.25° latitude–longitude spatial resolution. This method 
allows for spatially specific predictions of future temperatures while allowing for 
the use of consistent and readily available climate predictions from a single global 
model. This method may also slightly underestimate the predicted temperature 
increase since the temperature increase between 2012 and 2020 is not added in. 
However, the predicted increase during this period is relatively small compared 
with the increases predicted by the end of the century. We use the A1B scenario as 

Table 6 | Total WTP to avoid one hour of power outage affecting the whole country (2012 €​ million)

Country Winter Winter 2055 Winter 2089 Summer Summer 2055 Summer 2089

France 57.2 54.2 51.7 0.9 13.5 23.7

Germany 135.0 129.0 120.0 53.5 61.2 67.1

Italy 130.0 130.0 129.0 45.5 52.8 58.2

UK 89.2 84.4 81.5 40.8 46.0 50.3

Austria 10.6 9.7 8.8 5.9 6.8 7.3

Belgium 14.8 13.9 13.2 7.2 8.4 9.3

Finland 11.2 10.5 9.8 5.1 5.5 5.9

Netherlands 20.3 19.2 17.7 8.8 9.8 10.7

Spain 102.0 102.0 102.0 39.1 43.9 48.0

Sweden 16.3 15.6 14.4 7.0 7.9 8.5

Portugal 16.8 16.7 16.7 6.4 7.7 8.6

Bulgaria 15.0 15.0 14.9 4.7 5.5 6.4

Czech Republic 11.8 10.9 9.5 5.3 6.2 6.9

Hungary 17.7 17.5 17.4 6.3 7.5 8.5

Lithuania 3.8 3.7 3.3 1.2 1.6 1.9

Poland 65.4 63.7 59.9 31.1 36.7 40.7

Romania 36.1 35.9 35.5 14.7 17.3 19.1

Slovakia 7.3 7.0 6.5 2.8 3.8 4.4

Slovenia 4.9 4.8 4.7 2.1 2.5 2.8

Total 765.4 743.7 716.5 288.2 344.6 388.3

The values were generated using data from the 19 EU countries in our sample; these nations are shown in Table 4. The period 2046–2065 is referenced as the year 2055 and the period 2080–2099 is 
referenced as 2089. Note that all predictions use the 2010 level of population in each NUTS 3 region; thus, these do not account for population trends.
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it gives a middle-of-the-road estimate of future temperatures that falls in between 
the more optimistic and pessimistic emissions scenarios.

We predict in-sample WTP through time according to changes in 
temperatures. This imputation adjusts the 10,000 draws of βis, the respondent/
scenario-specific estimate of hourly WTP from equation (3), according to 
predicted temperature change from Hadley CM3 under scenario A1B, and the 
draws of the marginal effects of temperature. As we estimate a set of three marginal 
effects of temperature, one for each country group, the marginal effect used for 
each respondent is that which corresponds to their country group. These country 
groups are static through all imputations as the change in temperature is generally 
small relative to the temperature differences between groups. We multiply the 
predicted temperature change by the marginal effect draw and add this value to 
the draw of βis. Looping this procedure over the 10,000 draws of βis and of the 
marginal effects allows estimation uncertainty to carry through from the initial 
WTP estimation and also from the projection of the effect of temperature changes 
on WTP. This results in the relatively large standard deviation on the future WTP 
estimates that are shown in the predictive columns of Table 4.

We impute current and future hourly WTP across our sample of nations to 
obtain the maps shown in Fig. 2. To do so, we first calculate WTP for each of 
the 8,173 E-OBS temperature data grid points that fall within our sample of 19 
countries. The grid-point-specific WTP under current temperatures differs from 
the country mean WTP due to temperature differences between the country mean 
temperature and the temperature at that grid point, as variables are centralized 
around their country mean values. These observed temperature differences are 
multiplied by the estimated marginal effects of temperature and looped over all 
10,000 draws of the marginal effects to obtain an empirical distribution of WTP at 
each grid point. To predict the WTP at each grid point under future temperatures, 
we use the predicted temperatures from the Hadley CM3 under scenario A1B, 
as described above, and recalculate hourly WTP at each grid point according to 
predicted temperatures.

It should be noted that, as with any future prediction, our hourly WTP 
imputations rely on the assumption that the use and importance of electricity in 
the European household remain static in all ways aside from increases or decreases 
in the usage of climate control apparatus. Societal changes such as economic 
development, urbanization and energy market structure can also impact household 
WTP to avoid a power outage. The possibility of such changes are not explicitly 
considered in our analysis.

Data. Data for this analysis come primarily from a survey conducted for the 
SESAME (Securing the European Electricity Supply Against Malicious and 
Accidental Threats) research project. The survey was conducted during the last 
two quarters of 2012 and the first quarter of 2013 in all EU-27 nations. A detailed 
account of survey methodology and the full English version of the survey are 
given in ref. 19. The survey was given both as an Internet survey and on the phone 
with supplementary materials sent to phone respondents via post. This massive 
survey effort, encompassing over 13,000 interview hours and over 400,000 contact 
attempts, yielded over 8,000 completed questionnaires with around 300 survey 
responses per nation. Substantial effort was exerted to ensure that the final sample 
was representative of each nation’s population in the dimensions of gender, age, 
working status, income and rural residents. The survey obtained demographic, 
energy usage and energy perception information from each individual, and 
included a choice experiment designed to elicit respondent’s WTP to avoid 
blackouts with certain characteristics.

The choice experiment portion of the survey asked respondents to imagine 
a power outage with a specified duration, start and end time, month and area 
(residential street or whole country). A visual depiction of one of the eight 
scenarios shown to respondents is reproduced in Supplementary Fig. 1. There were 
two months represented in the survey, January and July. The survey used 1 hour, 
4 hours, 12 hours and 24 hours as durations of the outage scenarios, generally 
reflecting the durations found in the literature5,20–23. Since the number of choice 
tasks is limited to eight due to length and budgetary constraints, we reveal two 
scenarios for each duration length to every respondent. The characteristics of all 
eight scenarios are shown in Supplementary Table 1.

After seeing a depiction of a power outage scenario, respondents were offered 
the option to pay a specified amount of money in their native currency to avoid 
experiencing the outage. This is referred to as the ‘bid price’ (Pis), which varies 
for each respondent and with a total of four possible bid prices per scenario and 
country. The bid price design is based on a previous, similar WTP study conducted 
for the nation of Austria5. Bid prices are designed using the D-optimality 
criterion with balanced utilities to set the bids24,25. Two of the four bids of each 
scenario used in the Austrian study are adopted here with a correction for the 
difference in income distribution between Austria and every other nation. The 
other two bids of each scenario are held constant between countries to enable 
cross-country comparison. As expected, the survey results show that a decreasing 
proportion of respondents are willing to pay as the bid price increases as shown in 
Supplementary Table 2.

The initial survey sample of 64,536 complete observations from 8,067 different 
respondents (8 scenarios per respondent) was reduced due to missing responses 
to one or more of the survey questions used in the statistical model. Respondents 

were not offered an opt-out response in the choice experiment questions. Thus, the 
full sample of usable observations is a balanced panel of 61,928 observations from 
7,741 different respondents, with 8 choice observations per respondent.

For a respondent to be linked with the relevant temperature data, their 
location had to be approximated. The first step in this process was geocoding, 
or giving a cartographic point to a respondent’s location. Beginning with our 
sample of usable survey responses, 43% of these questionnaires were completed 
online, leaving us with no location information for these respondents. For the 
respondents that used phone and postal media, we were able to obtain the first 
seven digits of their phone numbers (including country code) and occasionally 
an address fragment that contained either a postal code or city name from the 
survey company. For legal reasons and privacy protection of survey participants, 
full addresses could not be obtained. As this study is concerned with broad 
temperature trends, we use aggregated temperature measures in our statistical 
model. Therefore, precise geocoding is not necessary, since in most cases, 
this data aggregation will average away measurement errors from incorrectly 
placed respondents. On the basis of the data we obtained from respondents and 
the spatial data available at the European level, we attempted to match every 
respondent to a postal code region.

Of the 4,605 respondents who used telephone and postal media for the survey, 
we were able to obtain address fragments for about 1,900 of them, although these 
fragments were not always useful for matching the respondent to a postal code. For 
the remaining respondents who used telephones for the survey, we manually linked 
telephone area codes to postal code regions for each country. Every nation has a 
different system and standards in place for postal codes and telephone area codes, 
leading to varied levels of precision in converting area codes into postal codes. In 
general, area codes define larger areas than postal codes. In cases where one area 
code matches to multiple postal codes, an effort was made to choose the postal 
code with the highest population to increase the chance the postal code is correct. 
Thus, at worst the geocoded respondent location is in the correct area code region, 
and at best in the correct postal code region.

Our ability to geocode respondents on the basis of area codes dictated our final 
estimation sample. This sample consists of data from 19 EU nations; the number 
of respondents varies between nations on the basis of the exact number that used 
phone and post media for their survey response and our ability to geocode their 
locations. The number of respondents in each nation and a summary of their 
characteristics is shown in Table 2. Some respondents gave cellular phone numbers, 
which cannot be referenced geographically. There were especially high proportions 
of respondents using cellular phones in Sweden and Finland, which is the reason 
for the smaller sample sizes in these nations. Respondents located outside of 
continental Europe, such as those on Atlantic islands, were dropped to avoid 
convoluting their responses with those from the mainlands of their nations where 
power supply and provision may be fundamentally different.

The final sample contains complete information for 2,729 respondents 
with 8 observations per respondent (1 per outage scenario), leaving a total of 
21,832 observations. The loss of observations is unlikely to compromise the 
representativeness of our sample, although the estimation sample does consist of a 
slightly older, less urban subset of survey respondents. The spatial distribution of 
our final sample of respondents is shown in Supplementary Fig. 2. We note from 
the figure that the level of spatial variation in our sample changes between nations, 
where some nations, such as Slovenia, have low intra-country variation in location 
and thus temperature measures, while other nations, such as Germany, have high 
intra-country variation in location and temperature variables.

Explanatory variables used in the statistical model (zis vectors) are defined 
in Table 1. The cross-country comparison of sample means in Table 2 shows 
the high level of heterogeneity across the 19 EU nations in our sample in many 
respects, most notably average income and the average number of outages 
experienced in the past year. Since we use category indicator variables in our 
zis vectors, one variable from each category had to be omitted to avoid perfect 
colinearity. The omitted category for the age groups is those younger than 35; the 
omitted category for the experienced outage duration is those who experienced 
an outage that lasted less than one hour or did not experience an outage at all;  
the omitted category relative to the ‘urban’ variable is those who live in suburban 
or rural settings.

The 19 EU nations represented in our estimation sample exhibit strong 
heterogeneity, in terms of their existing energy infrastructure and their experience 
with power outages. We also find that WTP to avoid power outages varies strongly 
between nations. For the interested reader, Table 5, collates some country-level data 
that reflect this heterogeneity in the electricity sector between nations. Population 
data at the NUTS 3 level used to impute aggregate hourly WTP in each nation are 
from the NUTS 2010 GISCO Eurostat (European Commission) database.

Ethics statement. The survey data were collected by Kudos Research firm, 
following high standards of participant data protection and voluntary participation. 
The data collection procedures were approved by an ethics officer of the European 
Commission in Brussels.

Data availability. The data that support the plots within this paper and other 
findings are available from the corresponding author upon reasonable request. 
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Furthermore, the results and imputation of this study are available upon request in 
shapefiles, which may be useful to policymakers and regional transmission system 
operators who are considering electricity infrastructure projects.
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